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本文中, 我們在 Q 上為每個 n ∈ N 引入分圓多項式 Φn(x), 並給出各種計算公式. 此外, 我們
也將證明 Φn(x) 是任一 n 次本原單位根在 Q 上的不可約多項式, 且其係數均為整數.

1 定義與計算

定義 1.1 (分圓多項式) 對每個 n ∈ N, 定義第 n 分圓多項式為

Φn(x) :=
∏

1≤k≤n
gcd(k,n)=1

(x− e2πik/n).

換言之, 第 n 分圓多項式即為恰以所有 n 次本原單位根為根的首一多項式. 注意到
degΦn(x) = ϕ(n) 為歐拉 ϕ 函數.

命題 1.2 對每個 n ∈ N, ∏
d|n

Φd(x) = xn − 1.

比較等式兩側的次數, 可知
∑

d|n ϕ(d) = n, 這是基礎數論中耳熟能詳的事實. 事實上, 正如下
文將要說明的, 這兩條恆等式背後的證明思路可謂殊途同歸, 本質上並無差別. 然而, 若要深入體會
命題 1.2 的內涵, 與其鉅細靡遺地鋪陳嚴格證明, 不如先計算一個不會太平凡的例子. 至於一般情
形, 其論證完全可以依循相同構想推展, 故留作習題, 請在今晚十二點按時繳交.

例 1.3 以 n = 6 為例, 欲確認

Φ1(x)Φ2(x)Φ3(x)Φ6(x) = x6 − 1. (1)

首先考慮等式右邊, 令 ζ6 := e2πi/6, 則 x6 − 1 的六個 6 次單位根為

{ζ6, ζ26 , ζ36 , ζ46 , ζ56 , ζ66 = 1} = {e2πi/6, e4πi/6, e6πi/6, e8πi/6, e10πi/6, e12πi/6 = 1}.
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另一方面, 依定義 1.1, 可知等式左邊有

Φ1(x) = (x− e2πi),

Φ2(x) = (x− e2πi/2),

Φ3(x) = (x− e2πi/3)(x− e4πi/3),

Φ6(x) = (x− e2πi/6)(x− e10πi/6).

注意到 (1) 的兩邊均為首一多項式, 且有同樣的根, 因此它們必相等.

命題 1.2 的證明中的關鍵觀察如下: 任一 n 次單位根皆為某個唯一滿足 d | n 的 d 次本原單位
根, 且反過來, 任一滿足 d | n 的 d 次本原單位根必為 n 次單位根 (比如說, e4πi/6 = e2πi/3 是一
個 6 次單位根, 同時也是 3 次本原單位根).
依此方法, 可以證明欲證等式的兩邊恰有完全相同的根. 由於兩者皆為首一多項式, 該等式遂告

成立. 進一步而言, 我們真正關心的其實是指數上的「分式」, 而此想法類似於證明恆等式∑
d|n

ϕ(d) = n

的其中一種常見方法高度相似.

命題 1.4 對一切 n ∈ N, Φn(x) 是整係數首一多項式.

證明 對 n 使用歸納法. 歸納基礎顯而易見, 故假設命題對每個 k = 1, . . . , n− 1 均成立. 依命題
1.2, 可知 ∏

d|n

Φd(x) = Φn(x) ·
∏
d|n
d ̸=n

Φd(x) = xn − 1,

所以

Φn(x) = xn − 1

/ ∏
d|n
d ̸=n

Φd(x). (2)

依歸納假設, 在乘積中的每一項均為整係數首一多項式, 故上述分式的分母當然也是首一多項式.
由長除法, 可推得 Φn(x) ∈ Z[x].

例 1.5 注意到 (2) 式提供了一種計算 Φn(x) 的方法. 舉個例子, 求 Φ8(x), 則

Φ8(x) =
x8 − 1

Φ1(x)Φ2(x)Φ4(x)
.

依定義 1.1, 有

Φ1(x) = x− e2πi = x− 1,

Φ2(x) = x− e2πi/2 = x+ 1,

Φ4(x) = (x− e2πi/4)(x− e6πi/4) = (x− i)(x+ i) = x2 + 1,

因此

Φ8(x) =
x8 − 1

(x− 1)(x+ 1)(x2 + 1)
= x4 + 1.

2



不難觀察到: 要使用 (2) 式來計算 Φn(x), 需要先求出 n 的所有真因數 d 相應的 Φd(x), 但這
聽起來很不直接､很沒效率. 因此, 在下面我們將提供 Φn(x) 的另一個公式來解決此問題, 即
一個不需要事先知道各 Φd(x) 的表達式 (命題 1.8).

定義 1.6 (莫比烏斯函數) 對每個 n ∈ N, 定義莫比烏斯函數 µ(n) 作

µ(n) =


1, n = 1;

(−1)r, n = p1 · · · pr, 其中 pi 為相異質數;

0, 其他情形.

莫比烏斯函數在數論中無所不在, 並且具有許多優美的性質. 我們即將會用到的工具如
下:

引理 1.7 對所有 n ∈ N, ∑
d|n

µ(d) =

1, n = 1;

0, n > 1.

證明 n = 1 的情形顯而易見, 故考慮 n > 1. 將 n 作質因數分解成 n = pα1
1 · · · pαr

r , 其中各
αi ≥ 1, 且 pi, pj 相異, 則 n的每個因數 d都形如 d = pβ1

1 · · · pβr
r , 其中每個 i都滿足 0 ≤ βi ≤ αi.

從定義 1.6 可看出, 只需考慮所有 i 都滿足 βi = 0, 1 的情形, 因為否則 µ(d) = 0. 將 n 的這些因
數依它們的質因數個數來分組, 有∑

d|n

µ(d) = µ(1) +
∑
i

µ(pi) +
∑
i ̸=j

µ(pipj) + · · ·+ µ(p1 · · · pr)

= 1 +

(
r

1

)
(−1) +

(
r

2

)
(−1)2 + · · ·+

(
r

r

)
(−1)r

= (1 + (−1))r

= 0.

命題 1.8 對所有 n ∈ N,
Φn(x) =

∏
d|n

(xd − 1)µ(n/d).

證明 有了引理 1.7 在手, 此公式便能迎刃而解. 注意到

∏
d|n

(xd − 1)µ(n/d) =
∏
d|n

∏
k|d

Φk(x)

µ(n/d)

(命題 1.2)

=
∏
d|n

∏
k|d

Φk(x)
µ(n/d)

=
∏
k|n

Φk(x)
∑

d′|n
k
µ(d′)

= Φn(x) (引理 1.7),
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其中或許只有第三個等式需要多加說明. 粗略地說, 我們在做的事情是將該二重乘積中 n 所有固定
的因數 k 對應的 Φk(x) 收集起來, 詳言之, 可觀察到對於每個如此的 k,{n

d
: d | n 且 k | d

}
=

{
d′ : d′ | n

k

}
.

(要是這對你來說還是不甚清楚, 不妨考慮實例: n = 60 及 k = 6 足矣.)

需要指出, 我們在上述證明簡單使用了莫比烏斯反演公式.

例 1.9 來使用命題 1.8 來計算規模稍微大一點的例子: Φ18(x). 注意到 18 的因數有 d =

1, 2, 3, 6, 9, 18, 分別對應

µ(18/1) µ(18/2) µ(18/3) µ(18/6) µ(18/9) µ(18/18)

0 0 1 −1 −1 1
.

故依命題 1.8, 有

Φ18(x) =
(x3 − 1)(x18 − 1)

(x6 − 1)(x9 − 1)
= x6 − x3 + 1.

瞧瞧, 這個公式的優雅之處, 不言而喻. 當 n/d 有平方因子時, 我們就可以從從容容地忽略之.

註記 1.10 依同樣的方法, 我們也可以游刃有餘地計算 (?) 出

Φ105(x) = x48 + x47 + x46 − x43 − x42 − 2x41 − x40 − x39 + x36 + x35

+ x34 + x33 + x32 + x31 − x28 − x26 − x24 − x22 − x20 + x17 + x16

+ x15 + x14 + x13 + x12 − x9 − x8 − 2x7 − x6 − x5 + x2 + x+ 1.

有趣的是, 105 這個數字其實是使其對應的分圓多項式具有異於 0, 1,−1 的係數的最小
正整數1 (若未留意, −2 是 x41 及 x7 這兩項的係數), 稱此性質為 P. 於是, 可能會浮現的問
題是:

• 什麼導致 105 具有性質 P (是否有理由)?

• 其它數字如何? 是否能識別出所有滿足 P 的數?

• 是否有更深層的理由或更深奧的理論和 P 有關?

2 不可約性

命題 2.1 對所有 n ∈ N, Φn(x) 在 Q[x] 中不可約.
1整數數列線上百科 (OEIS): 含有 n 或 −n 為係數的分圓多項式的最小階數
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證明 依高斯引理, 只需證明 Φ(x) := Φn(x) 在 Z[x] 中不可約. 設 Φ(x) = f(x)g(x), 其中
f(x), g(x) ∈ Z[x]. 由於 ζn := e2πi/n 是 Φ(x) 的一根, 故或者 f(ζn) = 0, 或者 g(ζn) = 0, 不失
一般性, 假設 f(ζn) = 0. 而且, 不妨再假設 f 在 Z[x] 中不可約. 於是, f(x) 是 ζn 在 Q 上的不可
約多項式 IrrQ(ζn)(x), 我們的目標是證明 f(x) = Φ(x). 又已有 f(x) | Φ(x), 只需證明

Φ(x) =
∏

1≤k≤n
gcd(k,n)=1

(x− ζkn) | f(x),

即欲證對所有滿足 1 ≤ k ≤ n 且 gcd(k, n) = 1 的 k, 有 f(ζkn) = 0.
首先, 考慮 k = p 是質數的情形, 並斷言 f(ζpn) = 0. 事實上, 我們將給出一個稍微更一般的結

論: 若對於 n 次本原單位根 ζ 有 f(ζ) = 0, 則對所有不整除 n 的質數 p, 均有 f(ζp) = 0.
因 ζp 仍是 n 次本原單位根, 故其亦為 Φ(x) 的一根, 因此有 0 = Φ(ζp) = f(ζp)g(ζp). 若

f(ζp) = 0, 則不攻自破. 現假設 g(ζp) = 0, 將證明這不可能.
設 h(x) := g(xp) ∈ Z[x], 則 h(ζ) = g(ζp) = 0. 另一方面, 一開始我們就假設了 f(x) 不可

約, 且在斷言中已經假設 f(ζ) = 0, 這麼一來 f(x) = IrrQ(ζ)(x), 從而 f(x) | h(x). 於是, 存在
a(x) ∈ Z[x] 滿足 h(x) = g(xp) = f(x)a(x). 透過對係數取模 p, 有

h(x) = g(xp) = g(x)p = f(x) · a(x) ∈ (Z/pZ)[x].

注意到, 若 f(x) 和 g(x) 互質, 則 f(x) 和 g(x)p 也是, 不合理. 所以 f(x) 和 g(x) 在 (Z/pZ)[x]
中有公因子, 不妨設為 d(x) ∈ (Z/pZ)[x], 其中 deg d(x) ≥ 1. 現, 依命題 1.2 及命題 1.4 (參見
(2) 式), 可知在 Z[x] 中,

f(x)g(x) = Φ(x) | xn − 1.

這表示在 (Z/pZ)[x] 中,
d(x)2 | f(x)g(x) = Φ(x) | xn − 1,

故存在 b(x) ∈ (Z/pZ)[x] 使得 xn − 1 = d(x)2 · b(x). 對等式兩側求形式導數, 得

nxn−1 = 2d(x)d
′
(x) · b(x) + d(x)2 · b′(x),

其非零 (因 p ∤ n) 且可被 d(x) 整除, 但因 d(x) | xn − 1, 故得矛盾.
現已證出, 只要 f(ζ) = 0, 其中 ζ 是 n 次本原單位根, 則對所有不整除 n 的質數 p, 都有

f(ζp) = 0, 現要使用這個結論來證明欲證的結果. 設 1 ≤ k ≤ n, gcd(k, n) = 1, 將 k 作質因數
分解成 k = p1 · · · pr (未必相異), 注意到對所有 i = 1, . . . , r, 皆有 pi ∤ n. 因為 f(ζn) = 0, 其中
ζn = e2πi/n 是 n 次本原單位根, 且 p1 ∤ n, 所以根據上述斷言, 有 f(ζp1n ) = 0. 接著, 因為 ζp1n 也
是 n 次本原單位根, 且 p2 ∤ n, 所以再依上述斷言, 可得 f(ζp1p2n ) = 0. 反覆進行此論證, 可見

0 = f(ζn) = f(ζp1n ) = f(ζp1p2n ) = · · · = f(ζp1···prn ) = f(ζkn),

而這即為我們想要的式子.

註記 2.2 我們也證明了, 對所有 n 次本原單位根 ζn, 都有 IrrQ(ζn)(x) = Φn(x), 因此體擴張
Q(ζn)/Q (n 次分圓擴張) 的次數為 [Q(ζn) : Q] = degΦn(x) = ϕ(n).
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註記 2.3 設 A 為有限體上的多項式環, k 為其分式體, 我們可分別將 A 和 k 視為 Z 和 Q 的
類比. 在此情形下, 也有對應的卡利茲分圓多項式的概念, 而本文所討論的一切 (乃至更多結果)
在這個背景下皆有平行的命題, 並且其證明方法本質上也相同. 關於此主題, 讀者可參考 [Pap23,
Chapter 7.1].
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