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其實早在數百年前就已經有數學家提出數的有理性與超越性的概念. 對於「有理性」的研
究, 18 世紀已有一些重要的成果, 例如歐拉 (Euler) 在 1744 年證明了 e 是無理數, 而蘭伯特
(Lambert) 則在 1761 年證明了 π 也是無理數. 不過, 超越數的存在性直到 1844 年才首次被證實.
那年, 約瑟夫·劉維爾 (Joseph Liouville) 在研究無理代數數的某種近似性質時, 做出了關鍵的突破,
並利用此性質首先明確地構造出一個超越數的例子. 本文將介紹他所開啟的這樣理論的起點.

1 劉維爾在丟番圖逼近論中的定理

定理 1.1 (劉維爾在丟番圖逼近論中的定理) 設 α 為滿足 n 次不可約多項式 f(x) =∑n
i=0 cix

i ∈ Z[x] 的無理代數數. 那麼, 存在一數 A > 0 使得對一切 p, q ∈ Z, q > 0, 均有∣∣∣∣α− p

q

∣∣∣∣ > A

qn
.

粗略來說, 定理 1.1 表明, 所有無理代數數 α 無法用有理數「很好地」去近似, 這是因為在 α

及任意有理數 p/q 之間一定有 A/qn 的差距. 換言之, 若有無理數 α 可以由有理數很好地近似到
一定程度, 則 α 必為超越數.

證明 由於 f 是多項式, 其導數 f ′ 必為連續函數, 故依最值定理, M := max[α−1,α+1] |f ′(x)| 必
存在. 設 {α1, . . . , αm} 為 f 的所有異於 α 的根構成的集合, 且設

0 < A < min{1, 1/M, |α− α1|, . . . , |α− αm|},

我們斷言該 A 有定理描述中的性質.
假設不然, 即存在 p, q ∈ Z, q > 0 滿足∣∣∣∣α− p

q

∣∣∣∣ ≤ A

qn
, (1)

由此可知, ∣∣∣∣α− p

q

∣∣∣∣ ≤ A

qn
≤ A < 1,
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故 p/q ∈ [α− 1, α+ 1]. 依均值定理, α 和 p/q 之間至少有一點 ξ 滿足

f(α)− f

(
p

q

)
= f ′(ξ)

(
α− p

q

)
. (2)

因為 p/q 也在該區間中, 所以 ξ ∈ [α− 1, α+ 1]. 於是, 根據 M 的定義, 我們有

M ≥ |f ′(ξ)|.

另外, α 是 f 的一根, 即 f(α) = 0, 而由對於每個 i = 1, . . . ,m, |α− p/q| ≤ A < |α−αi| 可
知, p/q /∈ {α1, . . . , αm}. 換言之, f(p/q) ̸= 0. 有了這兩個條件, 連同 (2) 可推得 f ′(ξ) ̸= 0, 因
此有 ∣∣∣∣α− p

q

∣∣∣∣ = |f(α)− f(p/q)|
|f ′(ξ)|

=
|f(p/q)|
|f ′(ξ)|

.

由此可見, 其分子 ∣∣∣∣f (
p

q

)∣∣∣∣ = ∣∣∣∣c0 + c1
p

q
+ · · ·+ cn

(
p

q

)n∣∣∣∣
=

1

qn
∣∣c0qn + c1pq

n−1 + · · ·+ cnp
n
∣∣

≥ 1

qn
,

其中, 最後一個等式成立是因為 c0, . . . , cn, p, q 均為整數, 且它們在最後一個絕對值中的組合非零
(由於 f(p/q) ̸= 0). 現在, 我們可將一切不等式綜合在一起, 可得∣∣∣∣α− p

q

∣∣∣∣ = |f(p/q)|
|f ′(ξ)|

≥ 1

|f ′(ξ)|qn
≥ 1

Mqn
>

A

qn
,

但這與 (1) 衝突.

2 劉維爾數

在上一節中, 我們介紹並證明了劉維爾關於無理代數數近似型的重要定理, 正是憑藉著這個結果, 他
得以首次明確構造出一個超越數的例子. 接下來, 我們將具體探討他的構造方式.

定義 2.1 (劉維爾數) 設 α ∈ R, 若對一切 n ∈ N, 皆存在 a, b ∈ Z, b > 1, 使得

0 <
∣∣∣α− a

b

∣∣∣ < 1

bn
, (3)

則稱 α 為劉維爾數.

根據定義, 劉維爾數皆可在某種程度上被有理數良好地近似. 定理 1.1 暗示了所有劉維爾數均
為超越數——而事實也確實如此, 我們將透過兩個步驟加以證明.

命題 2.2 所有劉維爾數均為無理數.
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證明 假設不然, 即存在有理劉維爾數 α, 則可記 α = p/q, 其中 p, q ∈ Z, q ≥ 1. 取充分大的正
整數 n 使得 2n−1 > q. 我們斷言: 此特定的 n 與定義 2.1 矛盾, 即對一切 a, b ∈ Z, b > 1, (3) 中
其中一個不等式不成立 (從而 α 不會是劉維爾數).

注意到 |α− a/b| = |p/q − a/b| = |(pb− aq)/qb|.

• 情況 1: |pb− aq| = 0, 此時 |α− a/b| = 0, 但這與 (3) 的第一個不等式矛盾.

• 情況 2: |pb− aq| ≥ 1, 此時∣∣∣α− a

b

∣∣∣ ≥ 1

bq
>

1

b2n−1
≥ 1

b · bn−1
=

1

bn
,

第二個不等式成立於 n 的選取, 而第三個不等式成立於 b ≥ 2, 但這與 (3) 中的第二個不等
式矛盾.

得證.

命題 2.3 所有劉維爾數均為超越數.

證明 再次採矛盾證法, 假設有劉維爾數 α 是代數數. 依命題 2.2 可知 α 是無理數, 故滿足定理
1.1 的假設, 因此, 存在 n ∈ N 及 A > 0, 對於一切 p, q ∈ Z, q > 0, 均有∣∣∣∣α− p

q

∣∣∣∣ > A

qn
. (4)

取充分大的正整數 r 使得 2r > 1/A, 那麼由於 α 是劉維爾數, 依定義 2.1, 存在 a, b ∈ Z,
b > 1, 使得 0 < |α− a/b| < 1/bn+r, 但由此可推得

0 <
∣∣∣α− a

b

∣∣∣ < 1

bn+r
=

1

bnbr
≤ 1

bn2r
<

A

bn
,

這與 (4) 矛盾, 證畢.

我們已證明所有劉維爾數均為超越數, 接下來將舉一個劉維爾數的例子, 稱為劉維爾常數, 是由
劉維爾他自己提出的.

例 2.4 (劉維爾常數) 定義無窮和

L :=

+∞∑
m=1

1

10m!
= 0.110 001 000 00 · · · .

注意到其小數表示在小數點後的每第 m! 位均為 1, 餘者均為 0. 特別來說, L 是無理數.1 我們斷
言 L 是劉維爾數, 從而由命題 2.1 可推得 L 是超越數.

給定 n ∈ N, 將 L 寫成

L =

n∑
m=1

1

10m!
+

+∞∑
m=n+1

1

10m!
=

a′

10n!
+

+∞∑
m=n+1

1

10m!
,

1某實數是有理數的充要條件為: 其小數表示或者只有有限位, 或者有循環節.
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其中, a′ 是使得第一個和式可寫成單個分數的某數. 現, 取 a := a′, b := 10n!, 由此可得

0 <
∣∣∣L− a

b

∣∣∣ = +∞∑
m=n+1

1

10m!
=

1

10(n+1)!
+

1

10(n+1)!

+∞∑
m=n+2

1

10m!−(n+1)!

≤ 1

10(n+1)!
+

1

10(n+1)!

+∞∑
m=1

1

2m
=

2

10(n+1)!
<

1

10(n+1)!−1
≤

(
1

10n!

)n

,

其中, 最後一個不等式用到了 (n+ 1)!− 1 ≥ n(n!) (n ∈ N). 因此, 依定義 2.1, L 是劉維爾數.
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