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In this essay, we introduce the cyclotomic polynomial Φn(x) over Q for each n ∈ N.
We give various formulas for its computation. Moreover, we prove that it is the irreducible

polynomial of any primitive n-th roots of unity over Q with integer coefficients.

1 Definition and Computation

Definition 1.1 (Cyclotomic Polynomial). For any n ∈ N, we define the n-th cyclotomic

polynomial to be

Φn(x) :=
∏

1≤k≤n
gcd(k,n)=1

(x− e2πik/n).

In other words, it is the monic polynomial having exactly all primitive n-th roots of

unity as its roots. We note that degΦn(x) = ϕ(n) is the Euler’s phi function.

Proposition 1.2. For any n ∈ N, ∏
d|n

Φd(x) = xn − 1.

By considering the degrees of both sides, we see that
∑

d|n ϕ(d) = n, which is a well

known fact from basic number theory. In fact, as we will see, the proofs behind these two

identities are essentially the same. Nevertheless, the best way to understand Proposition

1.2 is to compute a not-so-trivial example rather than giving a rigorous proof. The general

argument can be done by exactly the same idea, which is left as an exercise.

Example 1.3. Let’s take n = 6 as an example. Then we want to check that

Φ1(x)Φ2(x)Φ3(x)Φ6(x) = x6 − 1. (1)

We first consider the right hand side. Put ζ6 := e2πi/6. Then the roots of x6−1 are precisely

all sixth roots of unity:

{ζ6, ζ26 , ζ36 , ζ46 , ζ56 , ζ66 = 1} = {e2πi/6, e4πi/6, e6πi/6, e8πi/6, e10πi/6, e12πi/6 = 1}.
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On the other hand, by Definition 1.1, we see that the left hand side are

Φ1(x) = (x− e2πi),

Φ2(x) = (x− e2πi/2),

Φ3(x) = (x− e2πi/3)(x− e4πi/3),

Φ6(x) = (x− e2πi/6)(x− e10πi/6).

Notice that both sides of (1) are monic and have exactly the same roots. So they must be

identical.

The key observation in the proof of Proposition 1.2 is the following: Any n-th roots of

unity is a primitive d-th roots of unity for some unique d | n. And conversely, any primitive

d-th roots of unity where d | n must be an n-th roots of unity. (For example, e4πi/6 = e2πi/3

is a sixth roots of unity, which is also a primitive third roots of unity.)

In this manner, one shows that both sides of the equation to be proved have exactly

the same roots. Since they are both monic, the equation follows. We further mention that

what we are really concerning is the “fractions” on the exponents. And this idea is highly

similar to one of the common proof of the identity
∑

d|n ϕ(d) = n.

Proposition 1.4. Φn(x) is a monic polynomial with integer coefficients for all n ∈ N.

Proof. We proceed by induction on n. The base case is trivial. So suppose the statement

holds for any k = 1, . . . , n− 1. From Proposition 1.2 we know∏
d|n

Φd(x) = Φn(x) ·
∏
d|n
d̸=n

Φd(x) = xn − 1.

So

Φn(x) = xn − 1

/ ∏
d|n
d ̸=n

Φd(x). (2)

By induction hypothesis, all terms in the product are monic with integer coefficients, thus

so is the denominator. This implies that Φn(x) ∈ Z[x] by long division algorithm.

Example 1.5. Note that (2) provides a method to compute Φn(x). As an example, let us

find Φ8(x). Then we have

Φ8(x) =
x8 − 1

Φ1(x)Φ2(x)Φ4(x)
.

And by Definition 1.1, we see that

Φ1(x) = x− e2πi = x− 1,

Φ2(x) = x− e2πi/2 = x+ 1,

Φ4(x) = (x− e2πi/4)(x− e6πi/4) = (x− i)(x+ i) = x2 + 1.
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So

Φ8(x) =
x8 − 1

(x− 1)(x+ 1)(x2 + 1)
= x4 + 1.

Note that in order to compute Φn(x) using (2), it is required to find Φd(x) first for

all proper divisors d of n. This sounds quite indirect and inefficient. So below, we give

another formula of Φn(x) which resolves this problem, i.e., the one which involves no prior

knowledge of Φd(x) (Proposition 1.8).

Definition 1.6 (Möbius Function). For any n ∈ N, we define the Möbius function µ(n) to

be

µ(n) =


1, if n = 1.

(−1)r, if n = p1 · · · pr where pi are distinct primes.

0, otherwise.

The Möbius function is ubiquitous in number theory and possesses lots of nice properties.

The one we are going to use is the following:

Lemma 1.7. For any n ∈ N,

∑
d|n

µ(d) =

1, if n = 1,

0, if n > 1.

Proof. The case n = 1 is trivial, so let us consider n > 1. We write n = pα1
1 · · · pαr

r into

prime factorization where each αi ≥ 1 and pi, pj are all distinct. Then every divisor d of n

is of the form d = pβ1
1 · · · pβr

r where 0 ≤ βi ≤ αi for all i. Note that from Definition 1.6, we

only need to consider when βi = 0, 1 for all i, because otherwise, µ(d) = 0. Grouping these

divisors of n by the number of their prime divisors, we see that∑
d|n

µ(d) = µ(1) +
∑
i

µ(pi) +
∑
i ̸=j

µ(pipj) + · · ·+ µ(p1 · · · pr)

= 1 +

(
r

1

)
(−1) +

(
r

2

)
(−1)2 + · · ·+

(
r

r

)
(−1)r

= (1 + (−1))r

= 0.

Proposition 1.8. For all n ∈ N,

Φn(x) =
∏
d|n

(xd − 1)µ(n/d).
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Proof. With Lemma 1.7 in hand, this formula is now fairly easy and immediate. One sees

that

∏
d|n

(xd − 1)µ(n/d) =
∏
d|n

∏
k|d

Φk(x)

µ(n/d)

by Proposition 1.2

=
∏
d|n

∏
k|d

Φk(x)
µ(n/d)

=
∏
k|n

Φk(x)
∑

d′|n
k
µ(d′)

= Φn(x) by Lemma 1.7.

The only thing that needs to be explained more is perhaps the third equality. Roughly

speaking, what we are doing in there is to collect all Φk(x) in that double product for each

fixed divisor k of n. Precisely, one observes that for each such k, we have{
n

d
| d divides n and k divides d

}
=

{
d′ | d′ divides n

k

}
.

(If this is still not clear for you, consider an explicit example: n = 60 and k = 6 is probably

good enough.)

We mention that in the above proof, we were simply applying the Möbius inversion

formula.

Example 1.9. Let us use Proposition 1.8 to compute a slightly larger example: Φ18(x).

Note that the divisors of 18 are d = 1, 2, 3, 6, 9, 18, which correspond to

µ(18/1) µ(18/2) µ(18/3) µ(18/6) µ(18/9) µ(18/18)

0 0 1 −1 −1 1.

So by Proposition 1.8, we have

Φ18(x) =
(x3 − 1)(x18 − 1)

(x6 − 1)(x9 − 1)
= x6 − x3 + 1.

See how nice this formula is? When n/d is not square-free, we can simply ignore it!

Remark 1.10. Using the same method, it is also very easy to compute (?) that

Φ105(x) = x48 + x47 + x46 − x43 − x42 − 2x41 − x40 − x39 + x36 + x35

+ x34 + x33 + x32 + x31 − x28 − x26 − x24 − x22 − x20 + x17 + x16

+ x15 + x14 + x13 + x12 − x9 − x8 − 2x7 − x6 − x5 + x2 + x+ 1.
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What’s interesting about the number 105 is the fact that it is the smallest positive integer

whose corresponding cyclotomic polynomial has coefficients other than 0, 1,−11. (In case

you didn’t see it, there are −2 in the x41 and x7-terms.) Let’s call this property P. So the

follow-up questions are perhaps:

• What causes 105 having property P (if there is a reason)?

• What about the other numbers? Can we classify all numbers satisfying P?

• Are there any deeper reasons or more advanced theory that are related to P?

2 The Irreducibility

Proposition 2.1. Φn(x) is irreducible in Q[x] for all n ∈ N.

Proof. By Gauss lemma, it’s sufficient to show that Φ(x) := Φn(x) is irreducible in Z[x].
Suppose Φ(x) = f(x)g(x) where f(x), g(x) ∈ Z[x]. Since ζn := e2πi/n is a root of Φ(x),

we have either f(ζn) = 0 or g(ζn) = 0. We say without loss of generality that f(ζn) = 0.

Moreover, we may also assume f(x) is irreducible in Z[x]. This implies that f(x) is the

irreducible polynomial IrrQ(ζn) of ζn over Q. Our goal is to show that f(x) = Φ(x). And

since we already have f(x) | Φ(x), it’s enough to show that

Φ(x)
def
=

∏
1≤k≤n

gcd(k,n)=1

(x− ζkn) | f(x).

That is, we want to show that f(ζkn) = 0 for all 1 ≤ k ≤ n with gcd(k, n) = 1.

First, we consider when k = p is a prime and claim that f(ζpn) = 0. In fact, we will

claim a slightly more general result that if f(ζ) = 0 where ζ is any primitive n-th roots of

unity, then f(ζp) = 0 for all prime p with p ∤ n.
Since ζp is again a primitive n-th roots of unity, it is also a root of Φ(x). Thus, we have

0 = Φ(ζp) = f(ζp)g(ζp). If f(ζp) = 0, we are done. So suppose on the other hand that

g(ζp) = 0. We prove that this will lead to a contradiction.

Let h(x) := g(xp) ∈ Z[x]. Note that h(ζ) = g(ζp) = 0. This means f(x) | h(x) as

f(x) = IrrQ(ζ) (recall f(ζ) = 0 by the assumption and f(x) is irreducible). We then write

h(x) = g(xp) = f(x)a(x) for some a(x) ∈ Z[x]. By considering the coefficients modulo p,

we have

h(x) = g(xp) = g(x)p = f(x) · a(x) ∈ (Z/pZ)[x].

Note that if f(x) and g(x) are relatively prime, then so are f(x) and g(x)p, which is absurd.

So we know f(x) and g(x) have a common factor in (Z/pZ)[x], say d(x) ∈ (Z/pZ)[x] where
1The On-Line Encyclopedia of Integer Sequences (OEIS): smallest order of cyclotomic polynomial con-

taining n or −n as a coefficient
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deg d(x) ≥ 1. Now, by Propositions 1.2 and 1.4 (see (2) also),

f(x)g(x) = Φ(x) | xn − 1 in Z[x].

This implies

d(x)2 | f(x)g(x) = Φ(x) | xn − 1 in (Z/pZ)[x].

So we may write xn − 1 = d(x)2 · b(x) for some b(x) ∈ (Z/pZ)[x]. By differentiating both

sides, we have

nxn−1 = 2d(x)d
′
(x) · b(x) + d(x)2 · b′(x)

which is non-zero (recall p ∤ n) and divisible by d(x). But this is a contradiction because

d(x) | xn − 1.

We have shown that if f(ζ) = 0 where ζ is a primitive n-th roots of unity, then f(ζp) = 0

for all prime p with p ∤ n. We now use this to prove our desired result. Let 1 ≤ k ≤ n

with gcd(k, n) = 1. We write k = p1 · · · pr into product of prime numbers (not necessarily

distinct). Note that pi ∤ n for all i = 1, . . . , r. Recall that since f(ζn) = 0 where ζn = e2πi/n

is a primitive n-th roots of unity and p1 ∤ n, so by our claim we have f(ζp1n ) = 0. Next,

since ζp1n is also a primitive n-th roots of unity and p2 ∤ n, so by our claim again, we have

f(ζp1p2n ) = 0. Repeating this argument, we see that

0 = f(ζn) = f(ζp1n ) = f(ζp1p2n ) = · · · = f(ζp1···prn ) = f(ζkn).

And this is exactly what we want.

Remark 2.2. We have also shown that IrrQ(ζn) = Φn(x) for any primitive n-th roots of

unity ζn. So the degree of the field extension Q(ζn)/Q (the n-th cyclotomic extension) is

[Q(ζn) : Q] = degΦn(x) = ϕ(n).

Remark 2.3. Let A be a polynomial ring over a finite field and k be its field of fractions.

We think of A and k as the analogs of Z and Q, respectively. Then there is the analogous

notion of Carlitz cyclotomic polynomials over k. And everything we have seen in this essay

(and more) has a parallel statement under this setting. In fact, their proofs are essentially

the same. A good reference to this topic is [Pap23, Chapter 7.1].
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