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Given an irreducible polynomial f(x) ∈ Q[x]. Let K be the splitting field of f(x) over

Q. One can ask how to determine the Galois group Gal(f) := Gal(K/Q). In the first half of

the essay, we prove a theorem due to Dedekind, which describes certain elements in Gal(f),

and thereby giving some limitations on the structure of Gal(f). Next, we mention a striking

result due to Chebotarev, called Chebotarev’s density theorem.

1 Dedekind’s theorem on Galois groups

Theorem 1.1 (Dedekind). Suppose f(x) ∈ Z[x] is monic and irreducible. For each prime

number p not dividing disc(f), write f(x) = f1(x) · · · fk(x) in (Z/pZ)[x] where each fi(x)

is irreducible. Assume deg fi = di. Then Gal(f) has an element which permutes the roots

of f(x) with cycle type (d1, . . . , dk).

For simplicity we will say that p “gives” the cycle type (d1, . . . , dk), and Gal(f) has an

element with cycle type (d1, . . . , dk).

This theorem can be explained very quickly from algebraic number theory. Basically,

p ∤ disc(f) implies that p is unramified in K. And the element we’re looking for is just

an (any) element in the Artin conjugacy class of p (see Remark 1.2 also). Let’s make this

precise.

Proof. Let α be any root of f(x) in K and E := Q(α). As p ∤ disc(f), we know p ∤ disc(E)

and so p is unramified in E. As K is the field extension of Q joining all conjugates of α

(i.e., all roots of f(x)), we have p is unramified in K.

Take a prime P in K lying over p. As P/p is unramified, the decomposition group

D(P/p) is isomorphic to the Galois group of the residue field extension OK/P over Z/pZ.
The latter is a cyclic group generated by the Frobenius automorphism σp, which sends an

element in OK/P to its p-th power. We let ϕ := ϕ(P/p) be the corresponding element in

D(P/p) ⊆ Gal(K/Q), which is characterized by the condition ϕ(α) ≡ αp (mod P ) for all
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α ∈ OK . (In other words, we have ϕ(α) = αp in OK/P .) We claim that ϕ has the desired

cycle type.

Write f(x) = f1(x) · · · fk(x) into irreducible factors in (Z/pZ)[x] where deg fi = di. As

p ∤ disc(f), all the roots of f(x) are distinct modulo P . Now, for each i = 1, . . . , k, pick a

root αi of fi(x). Note that the Frobenius automorphism σp generates all the conjugates of

αi. That is to say, the roots of fi(x) are given by

{αi, αi
p, . . . , αi

pdi−1} = {αi, ϕ(αi), . . . , ϕdi−1(αi)} and αi
pdi = ϕdi(αi) = αi.

Translating back to f(x), this means the element ϕ acts as a di-cycle on the roots of f(x)

which correspond to the roots of fi(x). This completes the proof.

Remark 1.2. Since different primes P in K lying over p correspond to different ϕ(P/p) up

to conjugation, these elements are actually in the same conjugacy class of Gal(f), called

the Artin conjugacy class of p. In particular, they have the same cycle type. Hence, the

cycle type is independent of the choices of P over p. This justifies the saying that p (not

P/p) gives the cycle type (d1, . . . , dk).

Before we compute some examples, let us first recall the determination of quartic Galois

groups. Suppose f(x) ∈ Q[x] is irreducible of degree 4. Let R3(f) be the cubic resolvent of

f . Then we have

disc(f) R3(f) Gal(f)

= square in Q irreducible A4

= square in Q not irreducible Z/2Z× Z/2Z
̸= square in Q irreducible S4

̸= square in Q not irreducible D4 or Z/4Z.

We also note that the differentiation between D4 and Z/4Z is rather technical and not

straightforward. (For a complete material on this topic, see [Con].)

Example 1.3. Consider the irreducible polynomial f(x) = x4+x−1. Note that disc(f) =

−283, which is not a square in Q. So Gal(f) = S4, D4 or Z/4Z. Moreover, the cubic

resolvent of f is R3(f) = x3+4x−1, which is irreducible. So we conclude that Gal(f) = S4.

We can also use Theorem 1.1 instead of the cubic resolvent. Note that the discriminant

of f is (luckily) a prime. So we may pick some small prime numbers p and consider the

factorization of f(x) in (Z/pZ)[x]. Again, as disc(f) = −283 is not a square in Q, we know

Gal(f) = S4, D4 or Z/4Z.

• p = 2. f(x) = x4 + x + 1 in (Z/2Z)[x]. So Gal(f) has an element of cycle type (4).

But this doesn’t help because all three remaining possibilities contain such element.

• p = 3. f(x) = x4 + x+ 2 in (Z/3Z)[x] =⇒ no conclusion.
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• p = 5. f(x) = x4 + x+ 4 in (Z/5Z)[x] =⇒ no conclusion.

• p = 7. f(x) = (x+ 3)(x3 + 4x2 + 2x+ 2) in (Z/7Z)[x]. So Gal(f) has an element of

cycle type (1, 3). This eliminates D4 and Z/4Z.

We may now conclude that Gal(f) = S4.

Example 1.4. Consider the irreducible polynomial f(x) = x4−2x2+7. Note that disc(f) =

210 · 32 · 7, which is not a square in Q. So Gal(f) = S4, D4 or Z/4Z. Moreover, the cubic

resolvent of f is R3(f) = x3 + 2x2 − 28x − 56 = (x + 2)(x2 − 28), which is reducible. So

Gal(f) = D4 or Z/4Z.
To apply Theorem 1.1, we can only consider primes not dividing disc(f). So we start at

p = 5. Note f(x) = (x+ 2)(x+ 3)(x2 + 2) in (Z/5Z)[x]. So Gal(f) has an element of cycle

type (1, 1, 2). This eliminates Z/4Z. So we conclude that Gal(f) = D4.

Example 1.5. Let’s consider an example of quintic polynomial. Say f(x) = x5 − x − 1,

irreducible with disc(f) = 19 · 151. First of all, since we’re considering quintic polynomial,

so we must have 5 | #(Gal(f)) and #(Gal(f)) | 5! = 120 as the Galois group embeds into

S5.

Next, we pick p = 2 ∤ disc(f) and see that f(x) = (x2+x+1)(x3+x2+1) in (Z/2Z)[x].
So Gal(f) has an element of cycle type (2, 3). In particular, Gal(f) has an element of order

6, which implies 6 | #(Gal(f)). This together with the first observation force #(Gal(f)) =

30, 60, 120.

Note that 30 is impossible because S5 has no subgroup of order 30 (why?). And since

disc(f) is not a square in Q, so Gal(f) is not contained in A5. In particular, #(Gal(f)) ̸= 60.

Hence, we may conclude that Gal(f) = S5.

Example 1.6. Finally, we consider the quartic irreducible polynomial f(x) = x4 + 5x+ 5

with disc(f) = 53 · 112. A similar procedure as in Example 1.4 shows that Gal(f) = D4 or

Z/4Z. We then try to apply Theorem 1.1. But after a little trial and error, one sees that

no conclusion can be drawn for small prime numbers. It then makes you wonder whether

such a “useful” prime exists.

It turns out that, it doesn’t. Further analysis (see [Con]) shows that Gal(f) = Z/4Z.
So no matter how far we go, we’ll only be able to get cycle types (4), (2, 2) and (1, 1, 1, 1).

But D4 also contains these three cycle types. So it is impossible to eliminate D4 by the

previous strategy.

A natural question arises from Example 1.6: What prime numbers give a certain cycle

type. Or perhaps with less ambition, how many prime numbers give a certain cycle type.

The latter is answered by Chebotarev’s density theorem, which concerns the “distributive

behavior” of those unramified primes. (This may in some sense help us find Gal(f).)
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2 Chebotarev’s Density Theorem

Let us first make some numerical observations via Example 1.3 and 1.4. Searching out the

first 10000 prime numbers not dividing disc(f), we obtain the following table indicating

how many of them give the certain cycle types.

f(x) Gal(f) (4) (1, 3) (2, 2) (1, 1, 2) (1, 1, 1, 1)

x4 + x− 1 S4 2496 3322 1244 2545 393

x4 − 2x2 + 7 D4 2520 0 3738 2508 1234

Notice that the ratios are very close to

f(x) Gal(f) (4) (1, 3) (2, 2) (1, 1, 2) (1, 1, 1, 1)

x4 + x− 1 S4 1/4 1/3 1/8 1/4 1/24

x4 − 2x2 + 7 D4 1/4 0 3/8 1/4 1/8

It turns out that, these distributive results are measured by the “size” of the conjugacy

classes in Gal(f). Precisely, we have the following.

Theorem 2.1 (Chebotarev’s Density Theorem). Let L/K be a finite Galois extension of

number fields with Galois group G. Let C ⊆ G be a conjugacy class. Then the set MC

of primes p of K which are unramified in L and for which there exists a prime P of L

lying above p such that the Frobenius automorphism ϕ(P/p) ∈ C has (natural) density

#(C)/#(G). In other words,

lim
n→∞

#{p ∈ MC with Np ≤ n}
#{p with Np ≤ n}

=
#(C)

#(G)
.

Now, we apply Chebotarev’s density theorem to the settings of Dedekind’s theorem.

Suppose we’re given a conjugacy class C ⊆ Gal(f) whose elements have cycle type (d1, . . . , dk).

Then from the proof of Theorem 1.1, we see that p gives this cycle type if and only if the el-

ement ϕ(P/p) ∈ C for some prime P over p. And this by definition is equivalent to p ∈ MC .

So asking how many prime numbers give a certain cycle type is equivalent to asking how

“large” is the set MC . And the latter is answered by Theorem 2.1. This helps us explain

our numerical data.

Say f(x) = x4+x−1 with Gal(f) = S4. Consider the conjugacy class C whose elements

have cycle type (4). One sees that #(C) = 6. So by Theorem 2.1, the primes which give

the cycle type (4) has density #(C)/#(G) = 6/24 = 1/4. This matches our numerical

experiment.

On the other hand, say f(x) = x4 − 2x2 + 7 with Gal(f) = D4. Note that no first

10000 primes not dividing disc(f) gives the cycle type (1, 3). This should really be expected

because D4 contains no element with cycle type (1, 3).
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We can also guess the Galois group based on the numerical data. In Example 1.6 we

saw that Dedekind’s theorem fails to work directly for the polynomial f(x) = x4 + 5x+ 5.

But we can still do the same computation and get the table

f(x) Gal(f) (4) (1, 3) (2, 2) (1, 1, 2) (1, 1, 1, 1)

x4 + 5x+ 5 ? 5025 0 2492 0 2483

Since disc(f) = 53 · 112 is not a square in Q. So Gal(f) = S4, D4 or Z/4Z. Moreover,

the cycle type (1, 1, 1, 1) (which corresponds to the conjugacy class consisting of only the

identity element) appears with frequency 2483/10000 ≈ 1/4. And by Theorem 2.1, this

number should be close 1/#(G). So we may guess #(G) = 4 and G = Z/4Z. This is indeed
the case. (But certainly, this is not a proof.)
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