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• Rings are assumed to have identity, but may not be commutative unless otherwise

specified.

• Ring homomorphisms always send 1 to 1.

Problem 1. Let 0 → M ′ → M → M ′′ → 0 be an exact sequence of A-modules (A being

commutative). Suppose M ′′ is flat. Show that the induced sequence 0 → M ′ ⊗A N →
M ⊗A N → M ′′ ⊗A N → 0 is still exact for any A-module N .

Problem 2. Let A be a commutative ring.

(a) Let F be a free A-module of rank n ≥ 2 with basis {e1, . . . , en}. Show that ei⊗ ej +

ej ⊗ ei is not a pure tensor in F ⊗A F for all i ̸= j.

(b) Find an element in Matn(A) which is not of the form vwt where v, w are viewed as

column vectors.

Problem 3. Let G be a group with normal subgroups H,K.

(a) Find examples to illustrate that H ≃ K may not imply G/H ≃ G/K and vice versa.

(b) Suppose there exists ϕ ∈ Aut(G) such that ϕ(H) = K. Show that it induces an

isomorphism ϕ : G/H → G/K.

Problem 4. Suppose H1 ⊆ G1 and H2 ⊆ G2 are normal subgroups such that H1 ≃ H2

and G1/H1 ≃ G2/H2. Does there always exist ϕ ∈ Iso(G1, G2) such that the diagram

1 H1 G1 G1/H1 1

1 H2 G2 G2/H2 1

∽ ϕ ∽

commutes? (The rows are natural short exact sequences.) Do the same thing for R-modules

where R is a ring.

Problem 5. Show that S5 has no subgroup of order 30.
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Problem 6. Given a polynomial f(x) over a field F . Suppose a is not a root of f(x).

Let N ∈ Matn(F ) be a nilpotent matrix. Show that the matrix polynomial f(aIn +N) is

invertible.

Problem 7. Let R be a PID. Say M = R/(d1) ⊕ · · · ⊕ R/(dm) with d1 | · · · | dm are

non-zero and non-unit. Is it possible that M ≃ R/(c1) ⊕ · · · ⊕ R/(cn) with n < m? (The

familiar condition c1 | · · · | cn is not required.)

Problem 8 (Finite Topology). Let X,Y be sets. We identify the set of functions from X

to Y with the product set Y X by f 7→ (f(x))x∈X , and endow it with the product topology

where each Y is given the discrete topology. We call this topology the finite topology.

(a) Show that a base of open sets of Y X consists of

Of,{x1,...,xn} := {g : X → Y | g(xi) = f(xi), i = 1, . . . , n}.

for some x1, . . . , xn ∈ X. (Of,{x1,...,xn} is an open neighborhood of f .)

(b) Suppose further that X,Y are groups. Show that the subset Hom(X,Y ) of group

homomorphisms from X to Y is closed in Y X .

(c) Let E/F be an algebraic extension. Show that Aut(E/F ) is closed in EE .

Problem 9. Let M,N be two modules over a commutative ring A. Show that the following

are equivalent.

(i) M = N .

(ii) Mp = Np for all p ∈ Spec(A).

(iii) Mm = Nm for all m ∈ Max(A).

In other words, being ”equal” is a local property. (Be careful that “=” cannot be replaced

by “≃”. For example, consider any two non-isomorphic invertible A-modules (see [Eis95,

Section 11.3]). Why this doesn’t contradict to [Ati69, Proposition 3.9]?)

Problem 10 (Poincaré Theorem). Let G be a group. Suppose H1, H2 are two subgroups

such that [G : H1] and [G : H2] are both finite. Show that [G : H1 ∩H2] is also finite.

Problem 11. Let E/F be a finite extension. For each α ∈ E, consider the F -linear

operator Tα : E → E given by Tα(v) := α · v for every v ∈ E. Show that the minimal

polynomial p(x) of Tα is equal to the minimal polynomial IrrF (α) of α over F , and the

characteristic polynomial f(x) of Tα is equal to IrrF (α)
[E:F (α)]. (Use either linear algebra

or module theory.)

Problem 12 (Perfect Pairing). Let R be a commutative ring and M,N be two R-

modules. An R-bilinear map (sometimes called a pairing) B : M × N → R is said to be

perfect on the left if the induced R-linear map M → HomR(N,R) is an isomorphism. In

other words, M is isomorphic to the dual module of N . Perfect on the right is defined in a
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similar way. We call B a perfect pairing if it is perfect on both left and right. (Note some

authors use the term “perfect” even when B is only one-sided perfect.)

(a) Find an example to show that this definition is asymmetric, i.e., perfect on the left

is not equivalent to perfect on the right.

(b) Find an example to show that non-degeneracy does not necessarily imply perfection.

Problem 13 (Dual Basis). Let V,W be two finite dimensional F -vector spaces with a

bilinear form B : V ×W → F . Show that the following are equivalent.

(i) B is non-degenerate.

(ii) B is perfect (Problem 12).

(iii) For any basis β = {v1, . . . , vn} of V , there exists a unique basis γ = {w1, . . . , wn} of

W such that B(vi, wj) = δij , where δij is the Kronecker delta. (Such (β, γ) is called

a dual basis of B.)

(iv) The matrix [B(vi, wj)] is invertible for some basis {v1, . . . , vn}, {w1, . . . , wn} of V,W ,

respectively.

Problem 14. Find an element which is neither separable nor purely inseparable over a

field F .

Problem 15. Let p, q be two prime numbers. Let f(x) = xp − q ∈ Q[x] and K be the

splitting field of f over Q. Find Gal(K/Q).

Problem 16 (Perfect Field). Let F be a field of characteristic p > 0. Show that the

following are equivalent.

(i) Every algebraic extension of F is separable.

(ii) F = F p := {ap | a ∈ F}.
(iii) The Frobenius endomorphism Frobp : x 7→ xp is an automorphism.

We call F a perfect field if one of the above conditions is satisfied.

Problem 17. Find an example of a field extension E/F such that E ≃ F but [E : F ] > 1.

Problem 18. Let K,L be two number fields. Suppose there exists a prime number p such

that p is unramified in K and totally ramified in L. Show that K and L are linearly disjoint

over Q.

Problem 19. Let k := Fq(t) be the rational functional field over a finite field Fq and

k∞ := Fq((1/t)) be the field of formal Laurent series. Show that k∞/k is separable. (This

is actually true in a more general setting.)

Problem 20 (Triangular Ring). Let R,S be two rings and M be an (R,S)-bimodule.

Set

A :=


(
r m

0 s

) ∣∣∣∣∣ r ∈ R,m ∈ M, s ∈ S

 .
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We identify A as the additive group R⊕M⊕S, and give the latter a ring structure according

to the multiplication on A. Show that

(a) The left ideals of A are of the form I1 ⊕ I2, where I2 is a left ideal in S, and I1 is a

left R-submodule of R⊕M containing MI2.

(b) The right ideals of A are of the form J1 ⊕ J2, where J1 is a right ideal in R, and J2

is a right S-submodule of M ⊕ S containing J1M .

(c) The (two-sided) ideals of A are of the form K1 ⊕K0 ⊕K2, where K1 is an ideal in

R, K2 is an ideal in S, and K0 is an (R,S)-subbimodule of M containing K1M +MK2.

Problem 21. Find a ring which is right artinian but not left artinian.

Problem 22 (Quaternion Algebra). Let F be a field of char(F ) ̸= 2. For a, b ∈ F×,

define the quaternion algebra Q(a, b) := F ⊕ F i⊕ F j⊕ Fk, where the multiplication law is

F -linearly spanned by

i2 = a, j2 = b, k = ij = −ji.

Show that

(a) Q(a, b) is a (4-dimensional) central simple algebra over F . In particular, Q(a, b) is

either isomorphic to a central division algebra of dimension 4 or Mat2(F ).

(b) Conversely, every 4-dimensional central simple algebra over F is isomorphic toQ(a, b)

for some a, b ∈ F×.

(c) Q(a, b) ≃ Mat2(F ) if and only if the quadratic form z2 = ax2 + by2 has non-zero

solutions (x, y, z) ∈ F 3. (See the definition of Hilbert symbol in [Ser73, Chapter III] or [Mil,

Chapter III.4].)

(d) Q(a, b) ≃ Q(b, a). What does it tell us in terms of (c)?

(e) Q(a, b) ⊗F Q(a, c) ≃ Q(a, bc) ⊗F Q(c,−a2c) ≃ Q(a, bc) ⊗F Mat2(F ). In particular,

this together with (d) imply that

[Q(a, b)] ∗ [Q(a, b′)] = [Q(a, bb′)] and [Q(a, b)] ∗ [Q(a′, b)] = [Q(aa′, b)]

in the Brauer group Br(F ) of F . In other words, the map Q : F× × F× → Br(F ) is

bimultiplicative.

(f) Q(a, b) ≃ Q(a, b)op. In particular, [Q(a, b)] is 2-torsion in Br(F ).

(See [FD93, Exercise 4.15-4.27] and [Mil, Exercise IV.5.7] also.)

Problem 23. Recall Maschke’s theorem: Let G be a finite group and F be a field with

char(F ) ∤ #(G). Then every representation of G over F is completely reducible (i.e., it

is a direct sum of irreducible subrepresentations). Find examples to illustrate that both

conditions “G is finite” and “char(F ) ∤ #(G)” cannot be dropped.

Problem 24. Determine the character tables of the dihedral group D4 and the quaternion

group Q8. Conclude that character table does not determine the group uniquely (up to

isomorphism).
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Problem 25. Let G be a finite group with an abelian subgroup H. Show that every

irreducible representation of G over C has degree ≤ [G : H].

Problem 26. Let G be a finite group and (ρ, V ) be an irreducible representation of G over

C with character χρ. Let C(G) be the set of conjugacy classes of G.

(a) Show that for each C ∈ C(G), the complex number∑
g∈C

χρ(g)

deg ρ

is integral over Z.
(b) Show that

#(G)

deg ρ
=

∑
C∈C(G)

∑
g∈C

χρ(g)

deg ρ
· χρ(g)

 .

Conclude that deg ρ | #(G).

Problem 27 (Semi-direct Product). (a) Let H and N be two groups. Given a homo-

morphism φ : H → Aut(N). We define the semi-direct product N⋊φH to be the set N×H

with the multiplication law

(n1, h1) · (n2, h2) := (n1φh1(n2), h1h2)

for all n1, n2 ∈ N and h1, h2 ∈ H. Prove that N ⋊φ H is a group under this multiplication.

(b) Let G be a group and H,N be subgroups with N normal. Assume H ∩ N = {e}.
Define φ : H → Aut(N) by φh(n) := hnh−1. Prove that NH ≃ N ⋊φ H.

Problem 28 (Splitting Lemma for Groups). A short exact sequence

1 −→ H
α−→ G

β−→ K −→ 1

of groups is said to be left split (resp. right split) if there exists a homomorphism α′ : G → H

such that α′ ◦ α = idH (resp. β′ : K → G such that β ◦ β′ = idK).

(a) Show that the exact sequence is left split if and only if there is an isomorphism

f : G → H ×K such that the diagram

1 H G K 1

1 H H ×K K 1

α

id

β

f id

ι π

commutes, where the bottom row is the natural short exact sequence for direct product.
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(b) Show that the exact sequence is right split if and only if there is a homomorphism

φ : K → Aut(H) and an isomorphism f : G → H⋊φK (Problem 27) such that the diagram

1 H G K 1

1 H H ⋊φ K K 1

α

id

β

f id

ι π

commutes, where the bottom row is the natural short exact sequence for semi-direct product.

(c) In particular, splitting on the left implies splitting on the right. Find an example to

illustrate that the converse may not hold. (Recall that when G is abelian, i.e., a Z-module,

then these two conditions are equivalent.)

Problem 29. (a) Let

1 −→ H
α−→ G

β−→ K −→ 1

be a short exact sequence of finite groups. Suppose H is of order m, K is cyclic of order n,

and gcd(m,n) = 1. Show that the exact sequence is right split (Problem 28).

(b) For an odd prime number p, show that
∏

a∈(Z/pnZ)× a = −1 for all n ∈ N.
(c) For an irreducible polynomial P ∈ Fq[T ] where q is a power of some odd prime

number, show that
∏

a∈(A/PnA)× a = −1 for all n ∈ N.

Problem 30. Let F be a field and f(x), g(x) ∈ F [x] which are relatively prime polynomials.

Show that the field extension F (x) over F (f(x)/g(x)) of function fields is finite and find

the degree.

Problem 31. (a) Let V be a finite-dimensional vector space over F with a perfect pairing

B : V × V → F . Let f, g ∈ EndF (V ) and β = {v1, . . . , vn}, γ = {w1, . . . , wn} be any dual

basis of B (Problem 13). Show that the sum

n∑
i=1

f(vi)g(wi)

is independent of the choice of dual basis (β, γ) of B.

(b) Suppose further that there exists T ∈ EndF (V ) satisfying B(T (v), w) = B(v, T (w))

for all v, w ∈ V . Show that

n∑
i=1

f(T (vi))g(wi) =
n∑

i=1

f(vi)g(T (wi)).

Problem 32. Let E/F be a field extension. Suppose a, b ∈ E such that a⊗ b = 1⊗ ab and

is non-zero in E ⊗F E. Show that a ∈ F .

Problem 33. Let E/F be an algebraic extension. Show that E⊗F E is an integral domain

if and only if E = F .
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Problem 34. Let A ⊆ B be rings and I be an ideal in A. We say α ∈ B is integral over

I if there exists a monic polynomial f ∈ I[x] such that f(α) = 0. Suppose α, β ∈ B are

integral over I. Show that α+ β, αβ are integral over I.

Problem 35. Let A be an integral domain with field of fractions F . For each maximal

ideal m ∈ Max(A), let Am ⊆ F be the localization of A at m. Show that

A =
⋂

m∈Max(A)

Am.

Also determine whether

A× =
⋂

m∈Max(A)

A×
m

is true.
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