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Abstract

This essay aims to collect various simple proofs of the infinitude of primes.

1 Proofs of the Infinitude of Primes

1.1 Euclid’s Original Proof

Theorem 1.1 (Euclid). Let S be a finite collection of prime numbers. Then there exists a

prime that is not in S.

Proof. Suppose S = {p1, . . . , pn} and set P = p1 · · · pn + 1. If P itself is a prime, then we

are done because P is not equal to any of p1, . . . , pn. So suppose P is composite, then it

has a prime factor, say q.

We claim that this q is not in S. Otherwise, we have q = pi for some i = 1, . . . , n. This

implies q divides p1 · · · pn. And since q also divides P , we have q divides P − p1 · · · pn = 1,

which is absurd. Hence, q is not in S.

We mention that Euclid’s proof of the “infinitude” of primes did not start with assuming

that there are only finitely many. Instead, Theorem 1.1 says that any finite set of primes

(not only the first n primes) can be extended to a larger prime set. We illustrate this by

the following example.
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Example 1.2. Let’s say S := {2, 17, 43}. Then P = 2 · 17 · 43 + 1, which is divisible by 7.

Thus, we have a new prime 7.

Let’s adjoin 7 to our prime list and put S′ := {2, 7, 17, 43}. Then P ′ = 2 · 7 · 17 · 43 + 1,

which is divisible by 5. Thus, we have a new prime 5.

Continuing this process, we obtain an infinite sequence of distinct primes. (It would be

interesting to ask whether all primes appear in this way.)

Remark 1.3. It is a common mistake (due to the false belief mentioned earlier) to think the

product of the first n primes plus 1 is a prime. As an example,

2 · 3 · 5 · 7 · 11 · 13 + 1 = 59 · 509

is not a prime.

1.2 The Limit of the Prime Counting Function

Definition 1.4. The prime counting function π : R → Z≥0 is a function which counts the

number of primes less than or equal to x. Precisely,

π(x) := #{p ≤ x | p is a prime}.

Proposition 1.5. limx→∞ π(x) = ∞.

As an immediate corollary, this implies that there are infinitely many prime numbers.

Proof. Our strategy is to find a function which is bounded above by π(x), but goes to

infinity when x → ∞. Then by comparison theorem we will obtain the result.

Let us fix an x and assume that n ≤ x < n+ 1 for some n ∈ N. We consider the graph

of the function 1/t as in Figure 1. Note that the area under the curve 1/t from 1 to x is

smaller than the area of those rectangles. From basic Calculus, they are simply Riemann

integral and the upper Riemann sum, respectively. So we see that∫ x

1

1

t
dt = lnx ≤ 1 +

1

2
+ · · ·+ 1

n
. (1)

Let p1 < p2 < · · · < ps be all primes ≤ x. We observe that

1 +
1

2
+ · · ·+ 1

n
≤

∑
m=p

α1
1 ···pαs

s

αi∈N

1

m
. (2)

This is because every positive integer ≤ n (which is now ≤ x) can be factored uniquely as

the product of p1, . . . , ps. But the sum on the right runs over all the possible powers, so it

contains more terms than the left-hand side.
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Figure 1

On the other hand, by the distributive law, we see that the sum∑
m=p

α1
1 ···pαs

s

αi∈N

1

m
=

(
1 +

1

p1
+

1

p21
+ · · ·

)
· · ·

(
1 +

1

ps
+

1

p2s
+ · · ·

)

=

s∏
i=1

1

1− 1
pi

=

s∏
i=1

(
pi

pi − 1

)
=

s∏
i=1

(
1 +

1

pi − 1

)
.

Note that by the definition, pi is the ith prime number. This implies that pi−1 ≥ i. Hence,

we have ∑
m=p

α1
1 ···pαs

s

αi∈N

1

m
=

s∏
i=1

(
1 +

1

pi − 1

)
≤

s∏
i=1

(
1 +

1

i

)
=

s∏
i=1

(
i+ 1

i

)
= s+ 1. (3)

But recall that s is the number of primes ≤ x. This means by Definition 1.4,

s+ 1 = π(x) + 1. (4)

Now, we may combine all of the information and see that

lnx
(1)

≤ 1 +
1

2
+ · · ·+ 1

n

(2)

≤
∑

m=p
α1
1 ···pαs

s

αi∈N

1

m

(3)

≤ s+ 1
(4)
= π(x) + 1.

Finally, since lnx → ∞ as x → ∞, we have limx→∞ π(x) = ∞. This completes the

proof.
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1.3 The Sum of Reciprocals of Primes

Proposition 1.6 (Euler, 17441). Let P be the set of all primes. Then the series
∑

p∈P 1/p

diverges.

Proof. We give a short proof due to Clarkson [Cla66]. Suppose on the contrary, the series∑
p∈P 1/p converges. Then there exists k ∈ N such that

∑
p∈P
p>k

1

p
≤ 1

2
.

In the case where P is finite, we take k to be the largest prime in P minus 1, so that the

sum is non-empty.

Let Q be the product of primes ≤ k. Then for each n ∈ N, we have p ∤ 1 + nQ for all

p ≤ k. Thus, all the prime divisors of 1 + nQ are > k. This implies for each N ∈ N, the
partial sum

N∑
n=1

1

1 + nQ
≤

∞∑
t=1

∑
p∈P
p>k

1

p


t

≤
∞∑
t=1

(
1

2

)t

= 1.

Thus, the series
∑∞

n=1 1/(1 + nQ) converges. But by the limit comparison test, this series

should diverge.

1.4 Furstenberg’s Proof Using Topology

Theorem 1.7 ([Fur55]). There are infinitely many primes.

Proof. For a, b ∈ Z with b ̸= 0, put

S(a, b) := {a+ nb | n ∈ Z}.

We define the topology on Z by declaring that U ⊆ Z is open if it is empty or a union of

S(a, b). One checks that this is indeed a topology.

• ∅ is open by the definition. And Z = S(0, 1) is also open.

• Any union of open sets is open by the definition.

• The intersection of two open sets is open. This is because S(a1, b1) ∩ S(a2, b2), if

non-empty, is precisely S(x, b′) where x ∈ S(a1, b1) ∩ S(a2, b2) and b′ := lcm(b1, b2).

1See https://scholarlycommons.pacific.edu/euler-works/72/ Theorem 19
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Note also that the basis S(a, b) is closed because

S(a, b) = Z \
b−1⋃
i=1

S(a+ i, b).

Now, since every integer other than ±1 is an integral multiple of some prime, we have

Z \ {1,−1} =
⋃

p: prime

S(0, p).

The left-hand side is not closed because the finite set {1,−1} can not be open. On the

other hand, the right-hand side is a union of closed sets S(0, p). Thus, the union can not

be finite. This shows that there are infinitely many primes.

1.5 Whang’s Proof Using Legendre’s Formula

Theorem 1.8 ([Wha10]). There are infinitely many primes.

Proof. Recall the following formula due to Legendre: For each n ∈ N,

n! =
∏

p: prime

pep(n) where ep(n) =

∞∑
k=1

[
n

pk

]
.

Note that

ep(n) ≤
∞∑
k=1

n

pk
=

n

p− 1
≤ n.

Thus,

n! ≤
∏

p: prime

pn for all n ∈ N.

This implies there are infinitely many primes because we always have

lim
n→∞

cn

n!
= 0

for any constant c ∈ R.
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