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The quadratic field Q(i) possesses several great structures. For example, it is a norm-

Euclidean field, which means that the field norm onQ(i) overQ induces a Euclidean function

on its ring of integers Z[i], the Gaussian integers. In particular, this Euclidean function

coincides with the complex norm, which allows us to visualize some properties of Z[i] on
the complex plane. In this essay, we will examine several of them using this picutre.

1 Euclidean domain =⇒ principal ideal domain

Definition 1.1. A Euclidean function (norm) on an integral domain D is a function ν :

D \ {0} → Z≥0 such that the following two conditions hold:

• For any a, b ∈ D with b ̸= 0, there exist q, r ∈ D such that a = bq + r where either

r = 0 or ν(r) < ν(b).

• For any non-zero a, b ∈ D, we have ν(a) ≤ ν(ab).

An integral domain is called a Euclidean domain if it has a Euclidean function.

Definition 1.2. An integral domain D is called a principal ideal domain if every ideal I in

D is principal. That is, I = (α) = α ·D for some α ∈ I.

We have the following basic fact.

Theorem 1.3. Every Euclidean domain is a principal ideal domain.

Proof. Let D be a Euclidean domain with a Euclidean function ν, and I be a non-zero ideal

in D. We choose 0 ̸= b ∈ I which has minimal Euclidean norm among non-zero elements

in I. We claim that b generates the ideal I. Suppose there is an element a ∈ I that is not

in (b). We write a = bq + r for some q, r ∈ D where either r = 0 or ν(r) < ν(b). Note that

r can not be 0 because otherwise we would have a = bq ∈ (b). But if ν(r) < ν(b), then it

would contradict to our choice of b because we have r = a − bq ∈ I. Hence, we conclude

that I = (b).
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The argument of this proof is fairly easy to understand. We now try to visualize it

through the example of Gaussian integers Z[i].

Example 1.4. To begin with, we recall that a natural Euclidean function on Z[i] is given
by the field norm on Q(i) (see [Fra03, Theorem 47.4]). That is, N(u+ vi) := u2 + v2 where

u, v ∈ Z. One sees that for any z ∈ Z[i], N(z) = z · z = |z|2, where · denotes the complex

conjugation and | · | denotes the absolute value on C. So the quantity N(z) measures the

distance from z to 0 on the complex plane. The smaller the norm is, the closer it is from

the origin.

According to the proof of Theorem 1.3, any non-zero ideal I in Z[i] is generated by an

element b ∈ I where N(b) is minimized among all non-zero elements in I. This means b is

the closest from the origin among all non-zero elements in I. On the other hand, note that

(b) = {n · b+m · ib | n,m ∈ Z}

consists of all Z-linear combinations of b and ib. The operation “+(n ·b)” (resp. “+(m ·ib)”)
represents moving a point on the complex plane toward the direction v⃗1 (see Figure 1) (resp.

v⃗2) for n (resp. m) steps, where each step is of length |b|. So any of their combination

n · b + m · ib represents the movement n · v⃗1 + m · v⃗2. Thus, when n,m run through all

pairs of integers, the elements in (b) will form a lattice in the complex plane, as shown in

Figure 1. In other words, the ideal (b) ⊆ I consists of all vertices of the squares. (Figure 1

demonstrates the situation when b = 1− 2i, but the other cases are similar.)
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v⃗1

v⃗2

Figure 1
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Now, if (b) ⊊ I, then there exists an a ∈ I but a /∈ (b). This means a is not one of the

vertices (as in Figure 2). Since Z[i] is a Euclidean domain with a Euclidean function N , we

may take q, r ∈ Z[i] such that a = bq + r where either r = 0 or N(r) < N(b).

Consider the inequality

N(r) = N(a− bq) < N(b).

Algebraically, it means that after doing the operation −bq to the number a, its Euclidean

norm N(a− bq) = N(r) will become smaller than N(b). But geometrically, this means that

after moving around on the complex plane, the point a will arrive at r and become closer

to the origin than b. That is, the final point r will lie in the circle centered at the origin

with radius |b|. See Figure 2 below.
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Figure 2

Note that since a is not one of the vertices, it will not end up at the origin. In other

words, we have r ̸= 0. Moreover, since a ∈ I is moving along the directions v⃗1 and v⃗2, all

of its stopping points (the black dots in Figure 2) are still in the ideal I. In particular, we

have r ∈ I and N(r) < N(b). But this contradicts to our choice of b. Hence, we conclude

that I = (b).

Remark 1.5. The points a, b ∈ Z[i] are in fact a = −5− 7i and b = 1− 2i. Thus, the path

of a in Figure 2 also suggests that

a+ (−2b+ 3ib) = r = −1 and N(r) < N(b).

Or equivalently,

a = bq + r where q = 2− 3i and r = −1.
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This is the division algorithm on Z[i] induced from the Euclidean function N .

2 Finite Quotients of Z[i]

Using the division algorithm on Z[i] mentioned above, one shows that the quotient of Z[i] by
any ideal is a finite ring (see [Fra03, Exercise 47.15]). We now try to visualize this property

on the complex plane.

Example 2.1. Lut us first consider the ideal (b) = (1− 2i) given in Example 1.4. We wish

to count the cardinality of Z[i]/(1− 2i). Considert the following figure.

b

ib

Figure 3

When visualizing the quotient ring Z[i]/(1− 2i), we identify points in Figure 3 with the

same relative position. For example, the red dots should be viewed as the same, and so

should the orange and the other colors. This suggests that #(Z[i]/(1− 2i)) = 5. (Exercise:

Identify the addition and multiplication on Z[i]/(1− 2i) through these dots.)

Example 2.2. More generally, we claim that the cardinality of Z[i]/(u + vi) is u2 + v2 if

gcd(u, v) = 1. Put z := u + vi ̸= 0. We may assume that neither u nor v is 0 because

otherwise z will be a unit, in which case the result is trivial. By choosing a suitable

generator, we may assume u, v ∈ N. That is, z is in the first quadrant. (This amounts to

taking ib = 2 + i as the generator instead of b = 1− 2i in Example 2.1; see Figure 3 also.)

One checks that the only points in Z[i] lying on the segment from 0 to z = u + vi are

the endpoints. Indeed, if there exist m + ni ∈ Z[i] with 0 < m < u such that un = vm,
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then since gcd(u, v) = 1, we would have u divides m, which is absurd. Since Z[i] is closed

under multiplication by i (i.e., rotating counterclockwise by 90 degrees), the same is also

true for the segment from 0 to iz.

The above argument shows that there are four points in Z[i] which lie on the boundary

of the retangle spanned by z and iz, and they are the same in Z[i]/(z). Take A = u2+v2 to

be its area, B = 4 to be the number of boundary points, and I to be the number of interior

points. Then by Pick’s theorem1, we have

A = I +
B

2
− 1.

Hence,

#(Z[i]/(z)) = I + 1 = A = u2 + v2.

Remark 2.3. Let d be a square-free integer. The norm-Euclidean quadratic fields Q(
√
d)

(i.e., the field norm on Q(
√
d) over Q induces a Euclidean function on its ring of integers)

have been fully classified:2

d = −11,−7,−3,−2,−1, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73.

Thus, the readers are welcome to give similar geometric interpretations for others rings,

such the ring of Eisenstein integers Z[ω] where ω := (−1+
√
−3)/2 as in Examples 1.4, 2.1,

and 2.2.
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1Given a polygon with integral coordinate vertices, let A be its area, B be the number of its integral

boundary points, and I be the number of its integral interior points. Then we have

A = I +
B

2
− 1.

2The On-Line Encyclopedia of Integer Sequences (OEIS): squarefree values of n for which the quadratic

field Q(
√
n) is norm-Euclidean
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