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In this essay, we introduce the notion of resultant of two polynomials, and give several

applications in algebraic geometry and number theory.

1 Resultant

Definition 1.1 (Resultant). Let R be an integral domain and f, g ∈ R[x] be two non-zero

polynomials. Write f(x) =
∑n

i=0 aix
i and g(x) =

∑m
j=0 bjx

j with anbm ̸= 0. The resultant

of f and g, denoted asR(f, g), is the determinant of the Sylvester matrix Syl(f, g) associated

to f and g. More precisely,

R(f, g) := det



a0 b0

a1 a0 b1 b0
... a1

... b1

an
...

. . . bm
...

. . .

an a0 bm b0

a1 b1

(m columns)
... (n columns)

...

an bm


(n+m)×(n+m)

,

if n+m > 0 and R(f, g) := 1 if n = m = 0.

The above matrix can be understood as follows: Let F be the field of fractions of R.

Denote Pn(F ) the F -vector space consisting of all polynomials of degree not exceeding n

and equip it with the standard ordered basis {1, x, . . . , xn}. Then for f, g as in the above

definition, consider the linear transformation

Tf,g : Pm−1(F )× Pn−1(F ) −→ Pn+m−1(F ), Tf,g(u, v) := fu+ gv. (1)

Then one sees that the matrix representation of Tf,g is precisely Syl(f, g).
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Remark 1.2. The definition given in here may not be exactly the same as other references.

Some authors put these coefficients in reverse order (i.e., with decreasing indices), or in

rows. But these various definitions are the same up to a sign multiple.

Proposition 1.3. With the notations as above. Suppose f(x) = an
∏n

i=1(x − αi) and

g(x) = bm
∏m

j=1(x − βj) where αi, βj are the roots of f(x), g(x) (not necessarily distinct),

respectively, lying in a fixed algebraic closure of F . Then

R(f, g) = amn bnm
∏

1≤i≤n
1≤j≤m

(βj − αi) = bnmf(β1) · · · f(βm) = (−1)nmamn g(α1) · · · g(αn).

Proof. It’s sufficient to prove the first equality. Set

f̃ := an

n∏
i=1

(x−Xi) and g̃ := bm

m∏
j=1

(x− Yj)

where Xi, Yj are indeterminates. Viewing f̃ , g̃ as elements in F [X1, . . . , Xn, Y1 . . . , Ym][x],

we prove that

Rx(f̃ , g̃) = amn bnm
∏

1≤i≤n
1≤j≤m

(Yj −Xi).

And the result will follow from the specialization

(X1, . . . , Xn, Y1 . . . , Ym) 7−→ (α1, . . . , αn, β1, . . . , βm).

Let K := F (X1, . . . , Xn, Y1 . . . , Ym) be the rational function field over F joining these

n+m variables, and view f̃ , g̃ ∈ K[x]. Consider the following K-linear transformation

T : Pm−1(K)× Pn−1(K) −→ Pn+m−1(K) −→ Kn+m

where the first map is given by (u, v) 7→ f̃u + g̃v and the second map is given by the

evaluation map h(x) 7→ (h(Y1), . . . , h(Ym), h(X1), . . . , h(Xn)). Then with respect to the

standard ordered basis of Pn(K) and the canonical basis of Kn+m, we see that

• The first map is represented by the Sylvester matrix Syl(f̃ , g̃) associated to f̃ and g̃.

• The second map is represented by the Vandermonde matrix

V :=



1 Y1 · · · Y n+m−1
1

...
...

. . .
...

1 Ym · · · Y n+m−1
m

1 X1 · · · Xn+m−1
1

...
...

. . .
...

1 Xn · · · Xn+m−1
n


(n+m)×(n+m)

.
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• The composite map T is represented by(
B O

O A

)
(n+m)×(n+m)

where

B =
(
Y j−1
i f̃(Yi)

)
m×m

and A =
(
Xj−1

i g̃(Xi)
)
n×n

.

Hence, we have

V · Syl(f̃ , g̃) =

(
B O

O A

)
.

Taking determinants yields detV · Rx(f̃ , g̃) = detB · detA. So from the well known fact

about the determinant of Vandermonde matrix, we have∏
i<j

Yj − Yi

∏
i<j

Xj −Xi

∏
i,j

Xi − Yj

 · Rx(f̃ , g̃)

= f̃(Y1) · · · f̃(Ym)g̃(X1) · · · g̃(Xn) ·

∏
i<j

Yj − Yi

∏
i<j

Xj −Xi

 .

Finally, we cancel out all the common terms and obtain

Rx(f̃ , g̃) = amn bnm
∏

1≤i≤n
1≤j≤m

(Yj −Xi).

This is exactly what we want.

There are some immediate consequences of Proposition 1.3.

Corollary 1.4. Let all notations be as above, then

(1) R(f, g) = (−1)nm · R(g, f).

(2) R(f1f2, g) = R(f1, g) · R(f2, g) for non-zero f1, f2 ∈ R[x].

(3) R(f, g) = 0 if and only if f(x) and g(x) have a common root (in an algebraic closure

of F ).

Example 1.5. Consider the polynomials f(x) = x4 +4x2 +3x+4 and g(x) = 2x3 − 3x2 −
3x− 5 in Q[x]. Note

R(f, g) = det



4 −5

3 4 −3 −5

4 3 4 −3 −3 −5

0 4 3 2 −3 −3 −5

1 0 4 2 −3 −3

1 0 2 −3

1 2


= 0.
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So they must share a common root in Q by Corollary 1.4(3). In fact, one sees that f(x) =

(x2 + x + 1)(x2 − x + 4) and g(x) = (x2 + x + 1)(2x − 5). So their common roots are

(−1±
√
−3)/2.

Proposition 1.6. Let f, g ∈ R[x] be two non-zero polynomials of degree n,m, respectively.

Then there exist u, v ∈ R[x] with deg u < m and deg v < n such that

fu+ gv = R(f, g).

Proof. Consider the linear transformation Tf,g in (1), which is represented by the Sylvester

matrix Syl(f, g). Then we are asked to show that R(f, g) ∈ R ⊆ Pn+m−1(F ) (as constant

polynomials) lies in the image of Tf,g. Equivalently, set

u(x) = u0 + u1x+ · · ·+ um−1x
m−1 and v(x) = v0 + v1x+ · · ·+ vn−1x

n−1.

Then we want to solve the following system of linear equations:

Syl(f, g)



u0
...

um−1

v0
...

vn−1


=


R(f, g)

0
...

0

 .

Recall that by definition, R(f, g) := det Syl(f, g). So if R(f, g) ̸= 0, then by Cramer’s rule

we may obtain a solution, which can be seen to have all entries in R. On the other hand,

if R(f, g) = 0, then the matrix Syl(f, g) is singular. So it admits a non-trivial null space.

Hence, we may choose a suitable solution so that ui, vj ∈ R for all i, j.

2 Applications in Algebraic Geometry

2.1 Intersection of two Plane Curves

Given two polynomials f(x, y), g(x, y) ∈ C[x, y]. We ask for a method to find their common

roots, i.e., we want to solve the system of equationsf(x, y) = 0

g(x, y) = 0.

Geometrically speaking, we look for the intersections of any two plane curves.

We can reduce this problem by fixing any y = y0 ∈ C, and solve the one-variable system

of equations f(x, y0) = 0

g(x, y0) = 0.
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By Corollary 1.4(3), we know the solution exists if and only if Rx(f(x, y0), g(x, y0)) = 0.

Viewing f(x, y), g(x, y) ∈ C[y][x], this quantity can be thought of as Rx(f(x, y), g(x, y)) ∈
C[y] specialized at y = y0. This suggests a process of finding the intersection points:

1. Find the roots of Rx(f(x, y), g(x, y)) ∈ C[y].

2. For each such y = y0, solve the one-variable system of equationsf(x, y0) = 0

g(x, y0) = 0.

Of course, the role of x and y is interchangeable.

Example 2.1. Let us first consider a simple example. Say we want to solve the system of

equations x3 − x2 − 2x− y2 = 0

x2 − 2x+ y2 = 0.
(2)

Surely, this is simple enough to solve directly. Here we use the method described above.

For step one, it seems easier to compute Ry(f(x, y), g(x, y)). We find that

Ry(f(x, y), g(x, y)) = det


x3 − x2 − 2x x2 − 2x

0 x3 − x2 − 2x 0 x2 − 2x

−1 0 1 0

−1 1


= x2(x− 2)2(x+ 2)2.

So x = 0,±2.

For step two, we consider three one-variable systems of equations, which correspond

respectively to x = 0,±2.

x = 0 =⇒

−y2 = 0

y2 = 0,
x = 2 =⇒

−y2 = 0

y2 = 0,
x = −2 =⇒

−8− y2 = 0

8 + y2 = 0.

So the solutions to the original system of equations (2) are (0, 0), (2, 0), (−2,±2
√
2i).

Example 2.2. We now consider a more complicated example. Sayx3 − 2x2y2 + xy4 − y5 = 0

x2 − y3 − y4 = 0.

We find that

Rx(f(x, y), g(x, y)) = y9(4y2 + 4y − 1).
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And so y = 0, (−1 ±
√
2)/2. This gives three one-variable systems of equations. The next

step is to find all of their solutions. We will leave this as an exercise. The solutions are

(0, 0),

(
−1 +

√
2

4
,
−1 +

√
2

2

)
,

(
−1−

√
2

4
,
−1−

√
2

2

)
.

2.2 Implicit Function of a Rational Parameterized Curve

The idea in the previous application can be used to find an implicit function of a rational

parameterized plane curve. Given a curve C defined by f(x, y) = 0 with a parametric

equation

(x(t), y(t)) =

(
p(t)

q(t)
,
r(t)

s(t)

)
where p, q, r, s ∈ C[t] with gcd(p, q) = gcd(r, s) = 1. This means we have f(x(t), y(t)) = 0

for all t. Note that a point (x0, y0) ∈ C if and only ifx0q(t)− p(t) = 0

y0s(t)− r(t) = 0

has a solution, except when t is one of the (finitely many) roots of q(t) and s(t). And by

Corollary 1.4(3), this is equivalent to say that the resultant Rt(x0q(t)−p(t), y0s(t)−r(t)) =

0. Hence, the curve C can be defined by the implicit function

Rt(xq(t)− p(t), ys(t)− r(t)) ∈ C[x, y].

Example 2.3. Consider a curve C with the parametric equation

(x(t), y(t)) =

(
t2 − 1

t2 + 1
,

2t

t2 + 1

)
.

Then

Rt(x(t
2 + 1)− (t2 − 1), y(t2 + 1)− (2t)) = 4x2 + 4y2 − 4.

So C is defined by the equation x2+ y2− 1, which is parameterized by the given (x(t), y(t))

(except for the point (1, 0) ∈ C).

2.3 Hilbert Nullstellensatz

Recall for a subset S in the polynomial ring C[x1, . . . , xn], the corresponding algebraic set

is defined as

V (S) := {(a1, . . . , an) ∈ Cn | f(a1, . . . , an) = 0,∀ f ∈ S}.

Below we prove the important theorem in algebraic geometry, called Hilbert Nullstellensatz,

with the help of resultant.

6



Theorem 2.4 (Hilbert Nullstellensatz (Weak Version)). Given an ideal I in C[x1, . . . , xn],
either 1 ∈ I or V (I) ̸= ∅.

Proof. We proceed by induction on n. When n = 1, we have I = (f(x1)) is principal. Then

1 ∈ I if and only if f ∈ C× is a constant if and only if V (f) = ∅ by fundamental theorem

of algebra. So the case n = 1 is true.

Suppose now n > 1 and assume 1 /∈ I. We may also assume I ̸= 0 because otherwise

we have V (I) = V (0) = Cn ̸= ∅. Thus, I contains a non-constant polynomial g. Note by

change of variables

(x1, . . . , xn−1, xn) 7−→ (x1 + xNn , . . . , xn−1 + xN
n−1

n , xn)

where N is any natural number greater than the total degree of g, we obtain another

ideal J so that it contains an element which is monic in xn.
1 And note that we have

1 ∈ I ⇐⇒ 1 ∈ J and V (I) ̸= ∅ ⇐⇒ V (J) ̸= ∅. So we may further assume g is monic in

xn.

Consider the ideal I ′ := I ∩ C[x1, . . . , xn−1] in C[x1, . . . , xn−1]. Note 1 /∈ I ′, so by

induction hypothesis, V (I ′) ̸= ∅. Thus, there exists (a1, . . . , an−1) ∈ V (I ′). We will claim

that the ideal

I ′′ := {f(a1, . . . , an−1, xn) | f ∈ I}

is proper in C[xn]. Assume this for a moment, then we have 1 /∈ I ′′. So by the n = 1 case,

V (I ′′) ̸= ∅. Say an ∈ V (I ′′). Then we have f(a1, . . . , an−1, an) = 0 for all f ∈ I. That is,

(a1, . . . , an−1, an) ∈ V (I). So V (I) ̸= ∅.

It remains to finish the claim. Suppose on the contrary that I ′′ = C[xn]. Then there

exists f ∈ I such that f(a1, . . . , an−1, xn) = 1. Now, recall that we chose a non-constant

polynomial g ∈ I which is monic in xn. Viewing f, g ∈ C[x1, . . . , xn−1][xn], we consider the

resultant Rxn(f, g). Then by Proposition 1.6, there exist u, v ∈ C[x1, . . . , xn−1][xn] such

that Rxn(f, g) = fu+ gv.

• As f, g ∈ I, we have Rxn(f, g) ∈ I. Moreover, it is a polynomial in C[x1, . . . , xn−1]. So

Rxn(f, g) ∈ I ′. And since (a1, . . . , an−1) ∈ V (I ′), we haveRxn(f, g)(a1, . . . , an−1) = 0.

• On the other hand, write f =
∑r

i=0 fix
i
n and g =

∑s
j=0 gjx

j
n as polynomials in xn,

where fi, gj ∈ C[x1, . . . , xn−1]. Then by our assumptions on f and g, we have
f0(a1, . . . , an−1) = 1

fi(a1, . . . , an−1) = 0, ∀ i = 1, . . . , r

gs(x1, . . . , xn−1) = 1.

1For each non-zero term cxd1
1 · · ·xdn

n in g, the change of variables gives c(x1 + xN
n )d1 · · · (xn−1 +

xNn−1

n )dn−1xdn
n . One sees that there is a unique term with largest degree, namely, cx

dn+d1N+···+dn−1N
n−1

n .

Since each term of g produces different such term as N > di for all possible i, there exists a unique term

with largest degree after the change of variables. Now, adjust the coefficient so that it is monic in xn.
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So the matrix in Rxn(f, g) specialized at (a1, . . . , an−1) is upper triangular with 1

along the diagonal. In particular, Rxn(f, g)(a1, . . . , an−1) = 1.

Hence, we are led to a contradiction.

3 Applications in Number Theory

3.1 Discriminant of a Polynomial

For a monic polynomial f(x) ∈ F [x] (char(F ) = 0 for simplicity), write f(x) =
∏n

i=1(x−αi)

where αi lies in a fixed algebraic closure of F for all i. Recall the discriminant of f is defined

as

disc(f) :=
∏

1≤i<j≤n

(αi − αj)
2 ∈ F.

It turns out that there’s an equivalent definition of discriminant using resultant.

Proposition 3.1. Setting as above, one has

disc(f) = (−1)n(n−1)/2R(f, f ′).

Proof. Note that

f ′(x) =
n∑

i=1

∏
j ̸=i

(x− αj).

So

f ′(αi) =
∏
j ̸=i

(αi − αj).

By Proposition 1.3, one sees that

R(f, f ′) = (−1)n(n−1)
n∏

i=1

f ′(αi) =
n∏

i=1

∏
j ̸=i

(αi − αj) = (−1)n(n−1)/2
∏

1≤i<j≤n

(αi − αj)
2.

Example 3.2. Consider a quadratic polynomial f(x) = x2+bx+c ∈ C[x] and its derivative

f ′(x) = 2x+ b. Note that R(f, f ′) = −(b2 − 4c). So by Corollary 1.4(3), −(b2 − 4c) = 0 if

and only if f and f ′ share a common root in C (i.e., f has multiple roots in C). And by

Proposition 3.1, one sees that the discriminant disc(f) = −R(f, f ′) = b2 − 4c.

Example 3.3. Now, consider a cubic polynomial f(x) = x3+ax+b ∈ C[x] and its derivative

f ′(x) = 3x2 + a. In this case one finds that R(f, f ′) = 4a3 + 27b2. So by Corollary 1.4(3)

again, 4a3 + 27b2 = 0 if and only if f has multiple roots in C. And by Proposition 3.1,

disc(f) = (−1)3R(f, f ′) = −4a3 − 27b2.
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3.2 The Field of Algebraic Elements

Let E/F be a field extension. Define F alg(E) := {α ∈ E | α is algebraic over F}, called the

algebraic closure of F in E. Then it is a basic fact that F alg(E) is a field. That is, for any

α, β ∈ E which are algebraic over F , the same is true for α+ β, αβ and 1/α (when α ̸= 0).

One may recall a standard proof of this fact using elementary field theory is rather implicit.

As an application of resultant, we give a constructive proof of it. Namely, we explicitly

construct polynomials over F which are satisfied by α+ β, αβ and 1/α.

Proposition 3.4. Let E/F be a field extension and α, β ∈ F alg(E) with f(α) = g(β) = 0

for some non-zero f(x), g(x) ∈ F [x]. Put

h1(y) := Rx(f(x), g(y − x)) and h2(y) := Rx(f(x), x
deg gg(y/x)).

Then we have h1(α+ β) = h2(αβ) = 0. In particular, α+ β, αβ ∈ F alg(E).

Proof. These two can be easily deduced from Proposition 1.6. First, choose u1(x, y), v1(x, y) ∈
F [y][x] such that

h1(y) = f(x)u1(x, y) + g(y − x)v1(x, y).

Plug in (x, y) = (α, α + β) yields the result. Similarly, choose u2(x, y), v2(x, y) ∈ F [y][x]

such that

h2(y) = f(x)u2(x, y) + xdeg gg(y/x)v2(x, y).

This time, plug in (x, y) = (α, αβ). (Note we may assume α ̸= 0.)

Remark 3.5. Alternatively, one may also use Proposition 1.3 to prove Proposition 3.4. This

will be left as an exercise.

Example 3.6. As an example, take α = (−1 +
√
−3)/2 and β = 3

√
2 in C. Then we know

α satisfies f(x) = x2 + x+ 1 and β satisfies g(x) = x3 − 2. We find h1(y) and h2(y).

First, we see that

g(y − x) = (y − x)3 − 2 = −x3 + 3yx2 − 3y2x+ y3 − 2.

So

h1(y) = Rx(f(x), g(y − x)) = y6 + 3y5 + 6y4 + 3y3 + 9y + 9.

And Proposition 3.4 says that α+ β is a root of h1(y). On the other hand, we see that

xdeg gg(y/x) = x3

((
y

x

)3

− 2

)
= −2x3 + y3.

So

h2(y) = Rx(f(x), x
deg gg(y/x)) = (y3 − 2)2.

And Proposition 3.4 says that αβ is a root of h2(y). (Actually, what we did is quite overkill.

Note that α is a roots of unity with α3 = 1, so clearly αβ satisfies the polynomial y3 − 2.)
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Corollary 3.7. F alg(E) is a field.

Proof. By Proposition 3.4 we know F alg(E) is closed under addition and multiplication. To

complete the proof, it remains to show that F alg(E) is closed under taking multiplicative

inverse. But one sees that if 0 ̸= α satisfies f(x) ∈ F [x] with deg f = n > 0, then 1/α

satisfies xnf(1/x) ∈ F [x].

Corollary 3.8. The set of all algebraic numbers Q is a field.

Proof. By definition, Q := Qalg(C).

Alternatively, given α ∈ F alg(E), there’s another way to construct a polynomial satisfied

by β := g(α) for any given g(x) ∈ F [x]. (Hence, every element in F (α) can be considered.)

Proposition 3.9. Let E/F be a field extension and α ∈ F alg(E) with f(α) = 0 for some

non-zero f(x) ∈ F [x]. For any β := g(α) where g(x) ∈ F [x], put

h(y) := Rx(f(x), y − g(x)).

Then we have h(β) = 0.

Proof. By Proposition 1.6, choose u(x, y), v(x, y) ∈ F [y][x] such that

h(y) = f(x)u(x, y) + (y − g(x))v(x, y).

The result now follows from substituting (x, y) = (α, β).

Example 3.10. Consider a quadratic polynomial f(x) = x2 + bx+ c ∈ Q[x] with a root α.

Take g(x) := −x− b and β := g(α) = −α− b. Then by Proposition 3.9, β satisfies

h(y) = Rx(f(x), y − g(x)) = y2 + by + c = f(y).

So β is actually another root of f(x). (One may recall that the sum of two roots of f(x) is

−b.)
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