Riemann’s functional equation of Riemann zeta function
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Recall the Riemann zeta function
(=31 w1 (1)
n=1 n’ ’

In this essay, we show that ((s) has a meromorphic continuation to the complex plane and
derive its functional equation.

Theorem 1 (Riemann). Let

€(s) = T (2) (), () > 1,

where I'(s) is the Euler gamma function. Then &(s) has a meromorphic continuation to the
whole complex plane. It is holomorphic on C\ {0,1} and has simple pole at s = 0,1 with

residue —1, 1, respectively. Moreover, It satisfies the functional equation
§(s) = £(1—s).
Proof. Recall the gamma function is defined as
[(s) = /OOO tse*t%, R(s) > 0.

We substitute s — s/2, multiply the factor 7=%/2n~% on both sides, do some change of
variables, and get
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Summing both sides from 1 to co with respect to n, we get
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Here,

is called the Jacobi theta series, which converges absolutely for &(z) > 0. Note that by the
definition of £(s), the left-hand side of (2) is

So we get

o= [ (M) et Q

In order to calculate the right-hand side of (3), we need the following functional equation
of theta series.

Lemma 2. The theta series 0(z) satisfies the functional equation

In particular,
0 (;) = t20(it), t> 0.
Proof. By identity theorem, it suffices to prove the second equality. Consider
fi(x) == et

The Fourier transform of fi(x) is

7ry2

hl) =rde

So by Poisson summation formula, we have

=3 hilm =X fim =20 (7).
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Returning to the right-hand side of (3), we see that
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So we get
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Note that the expression on the right is unchanged under the substitution s — 1 —s. Thus,
the same is true for the left-hand side. In other words, we have

§s) = &(1—s).

Also, the integrals in (4) are holomorphic for all s € C. Hence, £(s) is holomorphic on
C\ {0,1} and has simple pole at s = 0,1 with residue —1, 1, respectively. This completes
the proof. O

Corollary 3. ((s) has a meromorphic continuation to C\ {1} and a simple pole at s =1
with residue 1. Moreover, it satisfies the functional equation

C(s) = 2°n*Lsin (”;) T(1— s)¢(1 — s).

Proof. From Theorem 1, we multiply I'(1 — s/2) on both sides and get

75T (;) T (1 - ;) ((s)=n""2T (1 5 S) r (1 - ;) C(1—s). (5)

Using the reflection formula of the gamma function:

™
D(2)(1—2) = sn(r) ¢ Z,
the left-hand side of (5) becomes
_s S S _s ™
7r 2I‘<2>F<1—2> C(s)=m 2Sin(%s)C(s). (6)



On the other hand, using Legendre’s duplication formula of the gamma function:
1
I'(z)r (z + 2) = 2172Z7T%F(2Z),
the right hand side of (5) becomes

T <1 = 3) r (1 - ;) C(1—s) =752 20) 311 — s)c(1—5).  (7)

We may now equate (6) and (7) and get

T2 — 7rm C(s) = 7r_15$2172(155)7rél“(1 —5)C(1 —s).
S1n (7)
This simplifies to the desired functional equation. ]

Let s be a negative even integer. In this case, the sine factor in Corollary 3 is zero while
the others are non-zero. Thus, we have ((s) =0 for all s € {—2n | n € N}. Such s is called
a trivial zero of ((s). The famous Riemann hypothesis is a conjecture about the locations
of all non-trivial zeros of ((s).

Conjecture 4 (Riemann Hypothesis). All non-trivial zeros of {(s) lie on the line R(s) =
1/2.

Next, we express the Riemann zeta function at negative integers in terms of Bernoulli

numbers. Recall Euler’s calculation of Riemann zeta function at positive even integers.

Theorem 5 (Euler). For all positive even integer n € N, we have

¢(n) = — =D (2mi)"

2.p)

where By, is the Bernoulli number given by t/ (et — 1) = > 7%, Bxt* /k!.
Proof. See [Cha, Theorem 1.1]. O

Corollary 6. For k € N with k > 1, we have

By,
1—-k)=——7
(11— k)=~
where By, is the k-th Bernoulli number.

Proof. By Corollary 3 and Theorem 5, when k£ > 1 is even, we have
1—k
C(1—k)=2""*r"Fgin <7T(Q)> L'(k)¢(k)

otk L) (k1)) (—?’“(%i)‘“)

2 k!
By,
=0
When k > 1 is odd, we have {(1 —k) =0 as 1 — k is a trivial zero. One also recalls the fact
that By = 0 for all odd k& > 1 (see [Cha, Corollary 1.3]). This completes the proof. O



Remark 7. From Corollary 6, we take k = 2 and see that

Some people would interpret this identity as

(e 9]

1
-1) = —=14+2434+4+..-=
c()n§:1n +2+3+4+

1

12

and claim that the sum of all natural numbers is —1/12. This is incorrect because the series

expression (1) for ((s) is only valid for R(s) > 1.
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