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1 Covering the Plane with Lines

A set is called finite if it contains a finite number of elements—regardless of how large that

number may be. Otherwise, it is considered infinite. Moreover, if there exists a bijection (a

one-to-one correspondence) between an infinite set and the set of positive integers, the set

is said to be countable; if no such bijection exists, the set is called uncountable.

Problem 1. Suppose you are drawing lines on the Cartesian plane with the goal of covering

the entire plane. That is, every point in the plane must lie on at least one of your lines.

Prove that this cannot be achieved using only countably many lines. In other words, to

cover the entire plane with lines, you need uncountably many of them.

First, you can’t cover the entire plane using only finitely many lines (Why?). On the

other hand, if there is no restriction on the number of lines, then the problem becomes

trivial: simply draw vertical lines through every point on the x-axis. But since the x-

axis contains uncountably many points, this method necessarily involves uncountably many

lines.

In our problem, however, you’re limited to using only countably many lines. Why does

this make it impossible to cover the entire plane? Let’s begin the proof.

Proof. Suppose we have drawn countably many lines on the plane. Then by definition, we

can label them as L1, L2, L3, . . .. Our goal is to show that there exists at least one point in

the plane that does not lie on any of these lines.

As we mentioned earlier, there are uncountably many vertical lines in the plane. That

means there are “more” vertical lines than the countably many lines L1, L2, L3, . . . that we
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have drawn. Therefore, there must exist at least one vertical line that is not among them.

Let’s call such a line L′. Our desired point is located somewhere on L′.

We can categorize the lines L1, L2, L3, . . . into two types:

• Those that are parallel to L′, and so do not intersect L′ at all.

• Those that are not parallel to L′, each of which intersects L′ at exactly one point.

Therefore, the total number of intersection points between L′ and the lines L1, L2, L3, . . .

comes entirely from the second type, which is equal to the number of lines not parallel

to L′. Since these lines are part of a countable set, their number must be either finite or

countably infinite (i.e., at most countable). Thus, L′ intersects the lines L1, L2, L3, . . . in at

most countably many points.

But since the number of points on L′ is uncountable, this means there must exist at least

one point on L′ that is not on any of the lines L1, L2, L3, . . .. This completes the proof.

2 Shifting Rooms Problem

Problem 2. Suppose we are given a finite number of rooms, each containing a finite number

of people. At each step, one person must leave their current room and move to another.

The rule is that a person may only move to a room that contains at least as many people

as their current room. Prove that after a finite number of steps, all the people will end up

in the same room.

If you take a moment to think about this problem, you are likely to convince yourself

with little difficulty. Since the rule requires moving only to rooms that are equally or more

populated, people will gradually leave the less populated rooms and join the more populated

ones. Eventually, everyone will gather in the same room.

This idea may seem straightforward at first glance, but can you provide a rigorous

proof? Let’s begin with a simple observation. Every time someone moves from one room

to another, the total number of people in all rooms remains the same. But what happens

if we don’t just sum the counts directly, and instead, sum their squares?

For simplicity, suppose there are only two rooms A and B, initially containing 2 and 3

people, respectively. Since Room A has fewer people, a person can only move from A to B.

In this case, the configuration changes from (2, 3) to (1, 4). If we simply sum the number

of people, the total remains the same:

2 + 3 = 1 + 4 = 5.

But if we instead square the number of people in each room and sum, it changes from

22 + 32 = 13
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to

12 + 42 = 17.

We see that the sum increases.

With this idea in mind, we now give a formal proof.

Proof. Suppose there are n rooms R1, . . . , Rn containing x1, . . . , xn people, respectively. As

we observed earlier, we focus on the sum of the squares of the number of people in each

room.

Consider a step where someone moves from room Ri to room Rj . According to the rule,

this means room Ri contains no more people than room Rj . In other words,

xi ≤ xj . (1)

After the move, the number of people in rooms Ri and Rj changes from

(xi, xj)

to

(xi − 1, xj + 1),

and the corresponding square-sum changes from

x2i + x2j (2)

to

(xi − 1)2 + (xj + 1)2. (3)

We note that

(3) = (xi − 1)2 + (xj + 1)2 = x2i − 2xi + 1 + x2j + 2xj + 1 = x2i + x2j + 2(xj − xi) + 2.

By (1), the last two terms 2(xj − xi) + 2 ≥ 2 > 0. It follows that

(3) = (xi − 1)2 + (xj + 1)2 > x2i + x2j = (2).

This shows that the square-sum strictly increases with each move.

On the other hand, note that this sequence is bounded above by1(
n∑

k=1

xk

)2

,

which corresponds to the square-sum when all people are in the same room. This bound

is attainable in finitely many steps as the square-sum increases strictly with each move.

Therefore, all the people will eventually end up in the same room.

1Exercise: Given finitely many non-negative integers, prove that the sum of their squares is bounded above

by the square of their total sum. That is, for any a1, . . . , an ∈ N∪{0}, we have a2
1+· · ·+a2

n ≤ (a1+· · ·+an)
2.
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