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在基本的微積分課程中, 有一道常見的習題, 是利用級數表達式 e =
∑+∞

n=0 1/n! 證明 e 是無理
數. 雖然歐拉 (Euler) 早在 1744 年的時候就已經完成了這個證明, 但當時人們尚不清楚 e 是否為
代數數, 直到 1873 年, 厄米特 (Hermite) 才證明出 e 是超越數, 距離歐拉的工作已經超過一個世
紀. 本文將介紹由赫維茲 (Hurwitz) 提出的一種初等但巧妙且精湛的方法來證明 e 是超越數, 整個
證明所用的工具僅僅需要基本的微積分知識.

定理 1 e 是超越數.

證明 先來作以下一般性的觀察: 對任意的 r 次多項式 f(x), 令

F (x) := f(x) + f ′(x) + · · ·+ f (r)(x).

注意到 (
e−xF (x)

)′
= e−x

(
−F (x) + F ′(x)

)
= e−x

(
−f(x) + f (r+1)(x)

)
= −e−xf(x),

其中, 最後一個等式成立於 deg f = r, 故依均值定理, 對所有 n ∈ N, 在 0 和 n 之間至少有一點
ξn 滿足 e−nF (n)− e0F (0) = −e−ξnf(ξn) · (n− 0), 這表示

F (n)− enF (0) = −nen−ξnf(ξn) =: ϵn. (1)

現, 假設 e 是代數數, 則存在 cn ∈ Z,

cNeN + · · ·+ c1e+ c0 = 0,
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結合 (1), 可得

N∑
n=1

cnϵn =

N∑
n=1

cn (F (n)− enF (0))

=
N∑

n=1

cnF (n)− F (0)
N∑

n=1

cne
n

=
N∑

n=1

cnF (n)− F (0) · (−c0).

因此, 我們得到等式

N∑
n=1

cnϵn = c0F (0) +
N∑

n=1

cnF (n), (2)

此等式對於任何多項式 f 均成立. 我們的目標是用巧妙的手段取一個多項式 f 來導出矛盾, 具體
來說, 對任何質數 p, 令

f(x) :=
1

(p− 1)!
· xp−1(1− x)p(2− x)p · · · (N − x)p, (3)

如先前的設定, F (x) := f(x) + f ′(x) + · · ·+ f (r)(x), 其中 r = deg f . 我們斷言: 存在一個大質
數 p 使得對於此特定的多項式 f , 在 (2) 式中,

1. 左式是能被 p 整除的整數;

2. 右式的 c0F (0) 是不能被 p 整除的整數;

3. 右式的 cnF (n) (n = 1, . . . , N) 是能被 p 整除的整數,

且這將導致矛盾.
我們採「3.､2.､1.」之順序來證明. 關於第三點, 由於 cn 是整數, 故只需證明:

對一切 n = 1, . . . , N, F (n) 是能被 p 整除的整數,

而根據定義, F (x) := f(x)+ f ′(x)+ · · ·+ f (r)(x), 因此我們只需要證明對所有 i = 0, 1, . . . , r

及 n = 1, . . . , N , f (i)(n) 是能被 p 整除的整數.

• 情形一: 0 ≤ i ≤ p− 1. 此時, 由 (3) 可立刻看出, 因為對每個 n = 1, . . . , N , n 為 f 的
p 重根, 所以對上述的每個 n, f (i)(n) = 0.

• 情形二: p ≤ i ≤ r. 此時, 我們的目標是證明 f (i) 是整係數多項式, 且各係數是 p 的倍
數. 注意到只需考慮 f 的不少於 i 次的項, 所以由 (3), f(x) 可以寫成

f(x) = · · ·+
∑

j∈Z≥0

∗
(p− 1)!

· xi+j ,
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其中, ∗ ∈ Z, 那麼,

f (i)(x) =
∑

j∈Z≥0

∗ · (i+ j)(i+ j − 1) · · · (j + 1)

(p− 1)!
· xj ,

並且可以看出

(i+ j)(i+ j − 1) · · · (j + 1)

(p− 1)!
=

(i+ j)!

(p− 1)!j!

=
(i+ j)! · p(p+ 1) · · · i

i!j!

=

(
i+ j

i

)
· p(p+ 1) · · · i

實際上是 p 的倍數 (注意: 我們對 i 的假設不可少). 因此, 我們完成了此情形的證明,
也跟著證出了第三點.

接下來, 我們考慮第二點, 並斷言:

F (0) 是整數, 且不是 p 的倍數.

如果我們證出此斷言成立, 那麼為了證出第二點, 我們就只要取 p > c0 (此時 c0 就不是 p 的
倍數).

關於該斷言, 因 F (x) := f(x)+f ′(x)+ · · ·+f (r)(x), 故我們只需證對每個 i = 0, 1, . . . , r,
f (i)(0) 是整數, 並且 p 不能整除 f (i)(0) 的充要條件為 i = p− 1.

• 情形一: 0 ≤ i ≤ p − 2. 與上一步的情形一類似地, 由 (3) 可知, 因為 0 是 f 的 p − 1

重根, 所以有 f (i)(0) = 0.

• 情形二: i = p − 1. 不難看出 f (p−1)(0) 是 f (p−1) 的常數項, 而根據 (3), 該常數即為
(N !)p, 故若取 p > N , 則 (N !)p 就不是 p 的倍數.

• 情形三: p ≤ i ≤ r. 這從上一步的情形二可以觀察出, 對於每個如此的 i, f (i) 是整係數
多項式, 各係數均為 p 的倍數.

最後, 我們考慮第一點. 由 (1), 有 ϵn := −nen−ξnf(ξn), 其中 ξn 是介於 0 和 n 之間的某
數. 以一種較粗略的估計來看, 對於每個 n = 1, . . . , N (故 0 ≤ ξn ≤ n ≤ N),

|ϵn| :=nen−ξn · 1

(p− 1)!
ξp−1
n |1− ξn|p|2− ξn|p · · · |N − ξn|p

≤NeN · 1

(p− 1)!
Np−1Np · · ·Np︸ ︷︷ ︸

N 項

=
eN (NN+1)p

(p− 1)!
→ 0 (p → +∞),
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其中, 我們用到了極限的一個基本結論——階乘函數「成長」得比指數函數還要快得多. 於
是, 每個 ϵn 可以任意小, 故可取充分大的 p 使得∣∣∣∣∣

N∑
n=1

cnϵn

∣∣∣∣∣ ≤
N∑

n=1

|cn||ϵn| < 1,

即 (2) 左式的絕對值小於 1, 而我們先前已經在前兩步就證出右式是整數, 從而強制該和為
0. 因此, 斷言得證.
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