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1 Determine the Area by Determinant

Back in high school, we learned that the area of the parallelogram spanned by two non-

parallel vectors on the Cartesian plane can be computed using the determinant. In this

section, we provide a visual explanation of this property.

Proposition 1.1. Given two vectors v⃗1 = (a, b) and v⃗2 = (c, d) in the plane, the parallelo-

gram ABDC spanned by these two vectors (see Figure 1.1) has area∣∣∣∣∣det
(
a b

c d

)∣∣∣∣∣ = |ad− bc|.

Proof. First, we assign coordinates to Figure 1.1 with point A at the origin. Then points

B,C,D have coordinates (a, b), (c, d), (a+ c, b+ d), respectively. Next, we draw an upright

rectangle inside the parallelogram ABDC, as shown in Figure 1.2.

Since the rectangle is drawn upright, we can identify the coordinates of its vertices. In

particular, one sees that the two dark-colored triangles (top and bottom) have equal area,

and the same goes for the two light-colored triangles (left and right). Notice that the area

of the parallelogram ABDC is the area of the central rectangle plus the total area of the

four triangles.

Next, we extend the four sides of the rectangle to form a dashed 3× 3 grid around the

parallelogram, draw four dotted lines, and label some points, as shown in Figure 1.3.
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A(0, 0)

B(a, b)

D(a+ c, b+ d)

C(c, d)

(a, d)

(c, b)

Figure 1.2
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Let’s look at the dark-colored triangle at the top. We have

Area of △CED =
1

2
× |CE| × |DT |.

Notice that |DT | = |RE|, so △CER and △CED have the same height. Since they also

share the same base CE, their areas must be equal. Thus, we can “move” the top dark

triangle from △CED to △CER without changing the area.

Applying the same transformation to the other three triangles (Exercise!), we arrive at

the configuration shown in Figure 1.4.

Figure 1.4
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It is now easy to see that the triangles of the same color can be combined into full

rectangles. We also relabel their coordinates in Figure 1.2 before, as shown in Figure 1.5.

(a, d)(c, d)

(a, b)(c, b)

(0, 0)

A B

C D

Figure 1.5

Recall that the area of the parallelogram ABDC was the area of the central rectangle

(which remained unchanged) plus the total area of the four triangles. Therefore, the area

of the parallelogram is A+ B +D. We can now compute that

A+ B +D = (A+ B + C +D)− C = ad− bc.

This completes the proof.

Remark 1.2. If the vectors are placed in the opposite order, we’ll get a negative sign. This

is why an absolute value is necessary in Proposition 1.1.

2 Pythagorean Theorem

Pythagorean theorem, probably the most well-known theorem among math amateurs, has

already been discovered over 300 proofs. In this section, we demonstrate the one given by

James Garfield, who was the 20th president of the United States. It is extremely simple

and yet so elegant that any elementary school student can understand.

Let us first state the theorem for completeness.

Theorem 2.1 (Pythagorean Theorem). Consider the right triangle in Figure 2.1. The

hypotenuse has length a, and the two legs have length b and c. Then we have

a2 = b2 + c2.
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Figure 2.1

Proof. The idea of Garfield’s marvelous proof is to find the area of a certain trapezoid in

two different ways and create a useful equality. We duplicate our right triangle △ABC,

rotate it by 90◦ clockwise, and call it △A′B′C ′. Note that △ABC ∼= △A′B′C ′. We next

join the points B′ and C, as shonw in Figure 2.2.

A B

B′ = C

C ′A′
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β
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B

Figure 2.2

Let’s take a closer look at what’s inside.

• Since △ABC ∼= △A′B′C ′, they must share the same area. Let’s call it A.

• We have ∠ABC = ∠A′B′C ′, which is denoted it as α. And ∠ACB = ∠A′C ′B′, which

is denoted it as β. Since the interior angles of a triangle add up to 180◦, we know
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α+ β = 90◦.

• We draw a dashed line connecting B and C ′, and form a new triangle △BCC ′. Its

area is denoted by B.

• Since α + β = 90◦, we have ∠BCC ′ = 90◦. Hence, △BCC ′ is a right triangle. And

both legs have length a.

We have obtained a trapezoid ABC ′A′. Let us compute its area in two different ways.

First, using the formula of trapezoids, we know its area is

(b+ c) · (b+ c)

2
. (1)

On the other hand, its area is also equal to A+A+ B. Using the formula of triangles, we

know they are
bc

2
+

bc

2
+

a2

2
. (2)

Since (1) and (2) are the same, we have

(b+ c) · (b+ c)

2
=

bc

2
+

bc

2
+

a2

2
.

Clearing the denominators out and expanding the left-hand side give us

b2 + 2bc+ c2 = 2bc+ a2.

Hence,

b2 + c2 = a2.

This completes the proof.

3 Sum of First n Squares

Every high school student should be familiar with this famous summation formula.

Proposition 3.1. For any n ∈ N, we have

12 + 22 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6
.

Maybe you still remember how to “verify” this equation using mathematical induction,

but none of your teacher has told you how to derive this formula from scratch. In this

section, we will see a simple explanation of it by using only manipulation of shapes.
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Figure 3.1

Proof. We take n = 5 as an example. The general case will follow similarly. Note that

finding 12+22+32+42+52 is exactly the same as finding the total area of five squares with

sides 1 to 5. Motivated by this, we draw three copies of them with one colored in advance,

as Figure 3.1.

Next, we cut these squares and put them together, as shown in Figure 3.2. Pieces with

colors are assembled into a tower. White squares with bold sides are those without any

coloring.

Since we are just cutting and pasting, the area of this big rectangle must remain the

same as those 15 squares in Figure 3.1, which is

3 · (12 + 22 + 32 + 42 + 52). (3)

On the other hand, let us look at Figure 3.2 very carefully. Its vertical side has length

1+ 2+ 3+ 4+ 5. And the horizontal side has length equal to the number of pieces of small

red squares adding 2. If we observe the top-left square in Figure 3.1, we see that there are

5+ 5− 1 such red squares. So the length of the horizontal side is (5+ 5− 1)+ 2 = 2 · 5+ 1.

Thus, the area of the big rectangle in Figure 3.2 is equal to

(1 + 2 + 3 + 4 + 5) · (2 · 5 + 1) =
5(5 + 1)

2
· (2 · 5 + 1). (4)

Here, we used the formula of sum of n consecutive integers.

Since both (3) and (4) represent the area in Figure 3.2, they must be equal. That is,

3 · (12 + 22 + 32 + 42 + 52) =
5(5 + 1)

2
· (2 · 5 + 1).
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Figure 3.2

Dividing both sides by 3 gives us

12 + 22 + 32 + 42 + 52 =
5(5 + 1)(2 · 5 + 1)

6
.

And here it is, our desired formula.
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