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二次體 (二次域) Q(i) 具有多種優美的結構, 比如說它是一個範數-歐幾里德體, 亦即, Q(i) 在
Q 上的體範數在其整數環 Z[i]——高斯整數環 Z[i] 上誘導出一個歐幾里德函數. 特別地, 這個歐幾
里德函數恰與複數的模一致, 因而使我們得以在複平面上直觀地呈現 Z[i] 的若干性質. 本文將藉由
這一幾何圖像, 探討其中的幾項性質.

1 歐幾里德整環 =⇒ 主理想整環

定義 1.1 所謂整環 D 上的歐幾里德函數 (範數) 是滿足下列兩條件的函數 ν : D \ {0} → Z≥0:

• 對任何 a, b ∈ D, b ≠ 0, 存在 q, r ∈ D 使得 a = bq+ r, 其中或者 r = 0, 或者 ν(r) < ν(b);

• 對任何非零元 a, b ∈ D, 均有 ν(a) ≤ ν(ab).

稱有歐幾里德函數的整環為歐幾里德整環.

定義 1.2 若整環 D 的每個理想 I 均為主理想, 即存在 α ∈ I 使得 I = (α) = α ·D, 則稱 D 為
主理想整環.

我們有以下基本事實.

定理 1.3 所有歐幾里德整環均為主理想整環.

證明 設 D 為具有歐幾里德函數 ν 的歐幾里德整環, I 為 D 的非零理想. 在 I 的所有非零元之
中選取歐幾里德範數最小的 b ∈ I, 並斷言 b 生成理想 I. 假設存在 a ∈ I \ (b). 令 q, r ∈ D 滿
足 a = bq + r, 其中或者 r = 0, 或者 ν(r) < ν(b). 不難看出 r ̸= 0, 否則 a = bq ∈ (b), 但要是
ν(r) < ν(b), 便有 r = a− bq ∈ I, 與 b 的選取矛盾. 因此, I = (b).

此論證脈絡分明, 理解起來並不困難, 現在我們將以高斯整數 Z[i] 為例, 嘗試對其加以視覺化的
理解.
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例 1.4 首先, 注意到 Z[i] 上一個自然的歐幾里德函數由 Q(i) 在 Q 上的體範數 (見 [Fra03,
Theorem 47.4]), 即 N(u + vi) := u2 + v2, 其中 u, v ∈ Z. 不難看出, 對任意 z ∈ Z[i], 有
N(z) = z · z = |z|2, 其中 · 表示複共軛, | · | 表示 C 上的絕對值. 所以, N(z) 測量複平面上從 z

至 0 的距離. 範數 N(z) 越小, z 離原點就越近.
根據定理 1.3 的證明, Z[i] 的各非零理想由某個 b ∈ I 生成, 其中在 I 的所有非零元之中,

N(b) 是最小的, 亦即 b 在 I 的所有非零元之中距離原點最近. 另一方面, 注意到

(b) = {n · b+m · ib | n,m ∈ Z}

含一切 b 和 ib 的 Z-線性組合. 運算「+(n · b)」(相應地, 「+(m · ib)」) 表示將複平面上一點沿
方向 v⃗1 方向 (見圖 1) (相應地, v⃗2) n 步 (相應地, m 步), 其中各步之長為 |b|. 於是, 任一個線性
組合 n · b+m · ib 表示移動 n · v⃗1 +m · v⃗2. 因此, 當 n,m 遍及一切整數對時, (b) 的元素在複平
面上形成格子點, 如圖 1 所示. 換言之, 理想 (b) ⊆ I 含每個方形的所有頂點 (圖 1 以 b = 1− 2i

的情形為例, 其它情形類似).
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圖 1

現, 若 (b) ⊊ I, 則存在 a ∈ I, a /∈ (b), 即 a 不為任一個頂點 (如圖 2). 因 Z[i] 是具有歐
幾里德函數 N 的歐幾里德整環, 故可取 q, r ∈ Z[i] 使得 a = bq + r, 其中或者 r = 0, 或者
N(r) < N(b).
考慮不等式

N(r) = N(a− bq) < N(b),

其代數意義為: 在對數 a 作運算 −bq 後, 其歐幾里德範數 N(a − bq) = N(r) 將變得小於 N(b);
而其幾何意義為: 在在複平面上沿著網格移動之後, 點 a 將抵達 r 且變得比 b 還更靠近原點, 即終
點 r 將位於以原點為圓心､半徑為 |b| 的圓的內部, 如下圖 2.
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圖 2

注意到, 因 a 不是任何一個頂點, 故最終不會停在原點, 換言之, r ̸= 0. 而且, 由於 a ∈ I

沿著方向 v⃗1 和 v⃗2 移動, 故其停靠點 (圖 2 中的黑點) 仍在理想 I 中. 特別地, 我們有 r ∈ I

且 N(r) < N(b), 但這與 b 的選取矛盾. 因此, I = (b).

註記 1.5 圖 2 中的點 a, b ∈ Z[i] 實際上分別是 a = −5− 7i 及 b = 1− 2i, 故 a 的路徑也暗示
了

a+ (−2b+ 3ib) = r = −1 且 N(r) < N(b),

等價地, 可寫成
a = bq + r, 其中 q = 2− 3i 及 r = −1,

這正是由歐幾里德函數 N 在 Z[i] 所誘導出的帶餘除法.

2 Z[i] 的有限商

根據以上提及的帶餘除法,不難證明 Z[i]對其任何理想的商是有限環 (見 [Fra03, Exercise 47.15]),
接下來我們將此性質呈現在複平面中.

例 2.1 先來考慮如例 1.4 中的理想 (b) = (1− 2i), 我們想要計算 Z[i]/(1− 2i) 的基數. 考察圖
3.
在將商環 Z[i]/(1−2i)加以視覺化時,可把圖 3中具有相同相對位置的點視為「同一個點」,舉

例來說,紅色的點應視為同一個元素,橘色以及其他顏色的點亦然. 由此可見, #(Z[i]/(1−2i)) = 5.
(練習: 試透過這些點來看出 Z[i]/(1− 2i) 上的加運算及乘運算.)
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例 2.2 更一般地,斷言: 若 gcd(u, v) = 1,則 Z[i]/(u+vi)的基數為 u2+v2. 設 z := u+vi ̸= 0,
不妨假設 u 和 v 同不為 0, 否則 z 為可逆元, 結論顯然成立. 而且只要選取適當的生成元, 便可假
設 u, v ∈ N, 即 z 在第一象限中 (對例 2.1 來說, 這相當於改以 ib = 2 + i 作為生成元, 而非原先
的 b− 2i; 參見 3).
不難檢查, 以 0 和 z = u + vi 為端點的線段上只有端點是 Z[i] 中的點. 的確, 若存在

m + ni ∈ Z[i], 0 < m < u, 使得 un = vm, 則由 gcd(u, v) = 1, 可得 u 整除 m, 矛盾. 因 Z[i]
在乘以 i 的運算 (即, 將點繞原點逆時針旋轉 90 度) 之下封閉, 故上述觀察對於以 0 和 iz 為端點
的線段亦成立.
以上論證了在由 z 與 iz 所張成矩形的邊界上, 恰有 Z[i] 的四個點, 而在商環 Z[i]/(z) 中, 這

四個點表示同一個元素. 取 A = u2 + v2 該矩形的面積, B = 4 為邊界點數, I 為內點數, 則依皮
克定理1, 有

A = I +
B

2
− 1,

因此
#(Z[i]/(z)) = I + 1 = A = u2 + v2.

註記 2.3 設 d 為無平方因子的整數, 其二次體 Q(
√
d) 為範數-歐幾里德體 (即 Q(

√
d) 在 Q 上

1給定以整數座標為頂點的多邊形, 其面積為 A, 其整數座標的邊界點數為 B, 其整數座標的內點數為 I, 則有

A = I +
B

2
− 1.
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的體範數在其整數環上引出歐幾里德函數) 者已完全確定有2

d = −11,−7,−3,−2,−1, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73.

因此, 非常歡迎讀者嘗試為其它環給出類似於例 1.4, 2.1 及 2.2 的幾何詮釋, 例如艾森斯坦整數環
Z[ω], 其中 ω := (−1 +

√
−3)/2.
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